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1. INTRODUCTION
The damages as void which is nucleated by second inclusions in the matrix, interface

debonding between two-face boundary, and the rigid particles fracture are well known
phenomena in the ductile materials. However, the mechanisms of these damages still have
some difficulty to explain and some phenomena as constraint/deformation effect as well as
size effect are still not clear. Especially this effect becomes remarkable in metal matrix
composites (MMC) materials. For the investigations of these damage mechanisms, both
experimental and computational studies have been conducted by many authors [Morimoto et
al., 1988], [Lloyd, 1991, 1994],  [Llorca et al., 1991, 1992].

The experimental analyses have been conducted by Kamat et al., (1989), Flom et al.,
(1989), Tao et al., (1993) and Kikuchi et al., (1995). These authors showed that the damage of
the MMC material is due to the dimple fracture of the matrix, particle cracking and the
debonding between a particle and the matrix. Apparently the fracture occurs where the SiC
particle volume fraction is comparatively larger than in other areas, and the final fracture
occurs as a result of the linkage of these locally fractured areas. Almost all of the materials
show strong inhomoginity and shape of them are not uniform. It indicates that the damage
occurs randomly in the materials and it is significantly affect the evaluations of strength and
predictions of the damage. For the predictions of the damage correctly, the detailed numerical
analysis is needed.

The numerical analyses of the damages in SiC whisker/particles reinforced aluminum
alloys have been conducted by many authors using the unit cell models or non-uniform model.
Christman et al., (1989) conducted unit cell analysis by considering the effect of thermal
residual stress and Kikuchi et al., (1993, 1995) carried out unit cell simulations by considering
the void nucleation and growth effects in the base matrix materials. Geni et al., (1998)
numerically discussed the effect of non-uniform distribution of SiC particle and the results
show that the local fracture occurs where the local particle volume fraction is the largest



FRACTURE ANALYSES OF METAL-MATRIX COMPOSITE MATERIALS

and/or the particle aspect ratio in local area is the maximum or minimum. It is also shown that
the stress-strain relations agree with the experimental ones qualitatively and the local damage
processes are well simulated. But the quantitative analysis of global, local behavior and the
constraint effect of whiskers/particles are not addressed explicitly. One reason for this is the
limitation of the computer memory. For the quantitative and accurate predictions of MMC
materials behavior, more general cell model containing many particles/whiskers with a
random distribution of size, shape and spacing should be considered, but it requires full three-
dimensional modeling and the load to computer becomes extremely heavy. The so-called
supercomputers, which have enhanced a capability of vector calculations, have managed so far
those requests for analyzing very large-scale problems. However, the growth rate of
computing power of a single vector processor has recently been saturating.

The parallel processing technique which concurrently utilizes several to thousands of
processors has become recognized as the key technology to deal with large-scale simulation in
a reasonable computation time (Lewis and El-Rewini, 1992; Almasi and Gottlieb, 1994
ADVENTURE Atsuya Oishi ). And now,  various types of parallel computers and software
libraries have been developed. So the  large scale computing of MMC materials by
considering the damage techniques becomes a reality.

In this study, the applications of parallel computing techniques are discussed on simulation
of damage in SiC particle reinforced aluminum alloy. The void nucleation and growth are
simulated using 100,000 DOFs CCT specimen FEM model. One million DOFs FEM models
with 5 SiC particles, is made and one step elastic FEM analysis is conducted.

  2. THE INCREMENTAL METHOD FOR THE ELASTIC-PLASTIC ANLAYSIS
It is well known that the Rmin method is widly used in large deformation FEM analysis by

considering the void nucleation and growth in the matrix. However, the Rmin method needs
large number of iterations until the global yielding of the FEM model. Usually, the necessary
number of iterations to the global yielding is as nearly equal as the number of element of the
FEM model. Then, it needs huge computing time, some model may be over a century, to
obtain the damages in the matrix. The void nucleation and growth is controlled by straining
history, so there are some problems to use the Marcal(1962) method directly for evaluation of
void nucleation and growth in the model. To overcome this difficulty, the new method is
discussed.

  2.1 The Model of Matrix Dimple Fracture
Though the damage in this material occurs by different mechanisms, the base matrix

aluminum alloy mainly shows dimple fracture, which occurs due to the nucleation and growth
of micro voids in the base matrix. Early investigations studied the void evolution in ductile
material. McClintock (1968) studied the evolution of cylindrical voids and Rice and Tracey
(1969) considered the spherical voids in infinite rigid perfectly plastic media. Gurson (1977)
developed an approximate model for ductile metals containing cylindrical and spherical voids.
Gurson assumed that the void is distributed randomly in the matrix, so that the global
response of the model is isotropic. Then Gurson proposed the yield condition for a spherical
model containing a void volume fraction, f, as follows,
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where σe is the equivalent stress, f  is the void volume fraction and σm is the equivalent
stress of the matrix.  The constant q1 and q2 are introduced by Tvergaard (1984).

In this analysis, the change of the void volume fraction during a deformation is assumed to
be due to two terms. One is the nucleation of new void, and another is growth of existing void.

(2)

As the matrix is plastically incompressible the growth term is given by

(3)

Nucleation of new voids occurs mainly at second phase inclusions, by debonding of the
inclusion-matrix interface or by inclusion fracture. As suggested by Needleman and Rice
(1978) the increment of void due to the nucleation is given by

(4)

Void is nucleated and it grows during the deformation history. When the void nucleation is
controlled by the plastic strain, it is modeled by taking A>0 and B=0, assuming that void
nucleation follows a normal distribution as suggested by Chu and Needleman (1980). Thus,
with the mean strain for nucleation εN, the corresponding standard deviation s, and the
volume fraction of segregated inclusions fN , A and B are given by
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This nonzero value of A is only used if matrix plastic strainεp
m exceeds its current

maximum value. Otherwise A=0.
When the void nucleation is controlled by the maximum normal stress on the inclusion-

matrix interface, the sum σM+σkk/3 can be as an approximate measure of this maximum
stress, thus taking A=B. Then, assuming that void nucleation follows a normal distribution
with the mean stress for nucleation σN, the corresponding standard deviation s, and the void
nucleating inclusions volume fraction fN , A and B are given by
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fN
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The nonzero values of A and B are only used if matrix stressσM+σkk/3 exceeds its current
maximum value. Otherwise A=B=0.
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2.2 Sub-increment Method
The total void volume fraction is described by using the incremental form as follows.

      　　 ttdtt fff +=+  　　(7)

where, dttf +  is void volume fraction on current stage,  tf  and tf  is void volume fraction. It
is shown that the void nucleation and growth are controlled by it's straining history.  It needs
huge CPU time if we use the Rmin method, and also there are some problems to use the
Marcal method directly.  In this study the increment is determined using following method.

The load increment during the elastic-plasatic FEM analysis is determined by using the
Rmean value defined as follows;

)0_( =numstageif                    NyieldRRRmean min)max( −=
else                                             )_()1max( numstageNyieldRRmean −−=    (8)

where, Rmax and Rmin are the maximum and the minimum R values which are calculated in
the first iteration, in the elastic anlaysis. Nyield is total iteration number, which is defined by
users, and it is expected that the global yielding occurs by this number of iteration.

numstage _  is a current iteration  number. Using equation (8), the increment of the next
iteration is deterimined automatically.  By this increment process, the stresse in many
elements exceeds the yield stress, and in some elements, stresses are overestimated. These
elements are called transient elements. To overcome this problem, the same method with
Marcal (1972) is used.
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Figure 1. The Type of Increment

For the  integration of stress from point 1 to point 2 as shown in figure 1 (a), the
conventional stress integration is conducted by the following equation.
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where C is stress-strain matrix.
In this integratioin process, the path from point 1 to 2 is divided into fine incremental steps,

as shown in Figure 1(b), which is called subincrement method.
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3.  PARALLEL COMPUTING

3. 1 Method of Parallel Computing
For the parallel numerical algorithm of the finite element analysis, the hierarchical DDM

combined with an iterative solver has been proposed by G. Yagawa and R. Shioya (1994). In
this method, a whole domain is fictitiously divided into a number of subdomains without
overlapping, and the finite element analyses of each subdomain are performed in parallel
under the constraint of both displacement continuity and force equivalence among
subdomains, which is satisfied through iterative calculations. In this study the same method is
used and the static loading balance is used for load disperse in parallel computing,  and the
part domain divided to each processor in hierarchical DDM. The FEM calculations are
conduct for all subdomains of each processor,  and internal boundary of displacement are
updated by using iterative method. The data structure is same as that of ADVENTURE
standard.  In the void growth analysis is conducted based on the finite deformation theory, and
the deviatric strain becomes important. As a result, the stiffness matrix becomes non-
symmetric.  The skyline method modified for the non-symmnetric matrix is used as the direct
solver, and the BiCGStab (H.A. Van der Vorst, 1992) is used as the iterative solver in the
following models.

3.2 The Damage Simulation of 100,000 DOFs Model
The CCT specimen is anlayzed for the evaluation of damage in the matrix near the crack

tip. The mesh pattern is shown in Figure 2. Due to the symmetry of the structure only 1/8 of
the whole specimen is considered. In the present study a box shaped super element [Tvergaard,
1988] is used for a 3D non-uniform model. It is composed of 24 constant strain tetrahedral
elements. The number of subincrement is 10, and the total step number to the global yielding,
Nyield, is 1000.

Figure 2.  The Mesh Pattern of CCT Specimen
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Figure 3 shows the equivalent plastic strain distribution when the damage appeared at one
element near the crack tip.   30 iteration steps are needed until this step.  The results show that
the distribution of plastic strain is concentrated at the crack tip and smoothly decreased from
the crack tip. The plastic strain distribution shape agrees with the conventional FEM analysis.

Figure 3. The Distribution of Equivalent Plastic Strain

Figure 4. The Distribution of Void Volume Fraction

Figure 4 shows the distribution of void volume fraction near the crack tip. It is shown that
the void volume fraction is concetrated significantly near the crack tip. The largest void
volume fraction appears at the center of the plate thickness.  This is due to the large stress-
triaxiality occurs near the center of plate thickness.

Figure 5 shows the change of void volume fraction in one element near the crack tip with
the increase of the plastic strain.  As shown in this figure, the growth term is much larger than
the nucleation term.
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 3.4  One-Million DOFs FEM Analysis of MMC
In the real structure, the SiC particles are distributed non-uniformly not only in the local

meaning but also in the global meaning. To consider the effect of the particles mutual
interaction and non-uniform distribution on the damage process, the model close to the real
structure is needed. Then the one million DOFs model for parallel FEM of MMC materials
have to be developed.

Figure 5. Increase of Void Volume Fraction

Figure 6 show the scheme of the model. Five SiC particles are set, and the particle located
at the center of which is 2 times larger than those of others. The average SiC volume fraction
of this model is 7%. The SiC particle aspect ratio is 1.0 in all particles.

For the reduction of the size of the model, only 1/8 part is modeled considering the
symmetrty of the structure. The mesh pattern of one million DOFs FEM model is shown in
Figure 7.  The mesh used for the non-uniform model is composed of 64000 box super
elements and each box represents 24 tetrahedral elements.

Figure 6. The Scheme of the MMC Model with five SiC Particle
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Figure 7. The Mesh Pattern of One-million DOFs FEM Model

Figure 8. The Appearance of Decomposition of FEM Mesh with One-million DOFs

Figure 9 The Residual vs. Number of Iterations



FRACTURE ANALYSES OF METAL-MATRIX COMPOSITE MATERIALS

Figure 10. The Distribution of Effective Stress

Figure 8 shows the appearance of decomposition of FEM mesh with one million DOFs for
SiC particle reinforced aluminum alloys. FEM meshes were decomposed into 10 parts, and
each parts include 1200 subdomains. Parallel computing is conducted on a PC cluster with 10
processors which is consisted of DEC Alpha AXP 533MHz with 512Mbyte memory using
Linux operating system.

The residual value is shown in Figure 9 corresponding to the number of BiCGStab
iterations. It is shown that the residual values decrease almost linearly with the increase of the
number of iterations.  The calculation was stopped when the residual becomes less than 1e-06.
It needs 3364 sec. including input and output process from/to the hard-disk.

Figure 10 show the effective stress distribution. It is shown that the largest effective stress
appears in the SiC particle clustered area, which agrees with the experimental observation
qualitatively.

  4. CONCLUDING REMARKS
The parallel finite element system by considering the damage during the deformation is

conducted based on the hierarchical DDM. The results show that the damages during the
deformation can be evaluated by using the Sub-inremental method, which is Rmin-Marcle
mixed method.

One million DOFs elastic parallel computing is conducted for the evaluation of the strength
of MMC materials. The qualitative agreement is obtained with experimental observation and
conventional numerical results.
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