
Annual Report of
ADVENTURE Project

ADV-99-1 (1999)

AUTOMATIC GENERATION OF TETRAHEDRAL MESH
WITH TEN-MILLION DOFS

Shinobu YOSHIMURA*, Yoshikazu KATAI**, and Hiroshi AKIBA**

* Graduate School of Frontier Sciences, University of Tokyo
e-mail:yoshi@q.t.u-tokyo.ac.jp

**Allied Engineering Corporation
e-mail:katai@alde.co.jp, akiba@alde.co.jp

Key words: Mesh Generation, Tetrahedral Elements, Fuzzy Knowledge Processing,
Computational Geometry, Parallel Processing

1. INTRODUCTION
This report describes a program for parallel automatic generation of mesh with ten-million

DOFs, which is one of pre-processing modules of ADVENTURE system. Parallel processing
is the key technique to perform this kind of large-scale mesh generation because of required
high-speed-processing and large memory usage. In this pre-processing system, a user specifies
geometric shapes, nodal-density-control information, boundary conditions etc. with the help of
a GUI on a front-end PC with Windows, as shown in Figure.1. Then, using the specified
information, ten million nodes and tetrahedral elements are generated in the back-end parallel-
processing environment (i.e. Alpha cluster). The appearance of meshes is concealed from
users, because the scale of mesh is very large. Namely, the geometric model is regarded as the
operating object and a user specifies data such as node-density-control information or
boundary conditions onto it. The information is passed to the parallel processing environment,
and meshes are generated by using the bucketing, Delaunay or other methods. The front-end
and back-end machines communicate with each other through TCP/IP sockets. Users can
select the parallel-processing environment according to their situation.

ethernet

slave slave slave slaveslave

ethernet

slave slave

master User Interface

slave slaveslave

Figure 1 System configuration for parallel generation of tetrahedral mesh

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

2. METHOD
2.1 Analysis Flow
2.1.1 Definition of an analysis model

The GUI part of the pre-process is created by referring a general-purpose solid modeler, on
a PC with Windows. On this GUI, a user composes an analysis model by specifying geometric
shapes of the model, node-density-control information, boundary conditions, physical
quantities etc., then the information is passed to the parallel processing environment
connected by a network. Because the scale of mesh is quite large, the appearance of the
meshes is concealed from users. For example, it is difficult to specify information such as
boundary conditions directly onto each node or element, in case of ten-million-scale DOFs.
Therefore, the geometric model is regarded as an operating object instead of mesh; a user
specifies nodal-density-control information, boundary conditions, physical quantities etc. onto
it. The specified nodal-density pattern can be confirmed by displaying its contour map or equi-
surface. Also the parallel-processing environment, which is an actual part of the mesh
generation, can be chosen by users according to their situation (ex. their analysis scale). The
mesh generator treats all boundaries as planes in order to decrease CPU time for node
generation on surfaces, IN/OUT check decision etc., as shown in Figure 2. Furthermore,
standard data formats such as IGES can be treated and input data for the mesh generator are
created by converting the geometry data including free-form surfaces into polygon patch data.

Figure 2 Example of polygon patch

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

2.1.2 Nodal density control
A user specifies the nodal density by setting several nodal-density functions (i.e. local

nodal-density-control information), which are prepared by the system or defined by the user,
to typical points of the model. Since these nodal-density functions are independently specified
and their effective regions overlap each other, it is ambiguous which density function should
be applied. In this system, therefore, the density pattern is determined over the whole analysis
region by taking the sum of sets for the overlapping density functions and adopting the
maximum value of the density. The processes are shown in Figures 3 and 4. Also the total
number of the nodes can be estimated with the obtained density pattern. If the estimated value
differs far from the total node number specified by a user or it exceeds the upper limit
applicable to the computer environment, the number of nodes can be adjusted by multiplying
some correcting coefficient to the whole node density function.

0

Nodal pattern 1

Nodal pattern 2

N
od

al
 d

en
si

ty

Position

Basic Nodal
pattern

Analysis domain

Figure 3 Superposition of nodal patterns based on fuzzy theory (1)

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

2.1.3 Representation of nodal-density-pattern information
When generating nodes, nodal density is frequently calculated at node-candidate points. If

the set of the nodal density functions specified by the user is used at each calculation and also
the nodal density field is complicated, this procedure must consume much CPU time. To
avoid this, this system adopts an approximation for the nodal density by introducing
orthogonal grids, as shown in Figure 5. Namely, the density is calculated in advance at the
lattice points of the three-dimensional orthogonal grids with using the specified nodal density
functions. Then the density can be obtained at any points by linearly interpolating the values at

Nodal pattern 2

Nodal pattern 1

position

Basic Nodal pattern

Nodal density

Nodal pattern 2Nodal pattern 1

Figure 4 Superposition of nodal patterns based on fuzzy theory (2)

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

eight surrounding vertex points of the rectangular parallelepiped which includes the
calculating point. By using this grid method, the density can be obtained in a definite time no
matter how complicated nodal-density pattern is specified.

2.1.4 Bucketing method
The node generation process is a time-consuming part in mesh generation as well as

element generation process. In this process a whole region is decomposed at first into smaller
domains called bucket. Then a lot of candidate points are generated from the maximum
density within this domain. Suppose the domain is fixed and the density varies rapidly in it,
many candidate points will be generated even in a sparse region. This causes much CPU time.
Therefore, as shown in Figure 6, the domain is recursively decomposed by the octree method
so that the number of candidate points in each bucket becomes almost constant. For each
bucket obtained in this way, candidate points are generated with about 1/5 of the node
separation calculated by the maximum density in the bucket, as shown in Figure 7. To adopt a
candidate as an actual node, the following conditions are imposed.
a) The point is inside the analysis domain.
b) No other registered points are included in a sphere the radius of which is the node

separation from that point.
If these two conditions are satisfied, the point is registered as a node. In the search process b),
the search area can be restricted to the buckets within the nodal separation. This makes CPU
time for node generation proportional to the total number of the nodes. [Yoshimura et al.,
1995]

Figure 5 Approximation of node density distribution using an orthogonal grid

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

Bucket

Octree subdivision

Boundary

Candidate nodesGenerated nodes

node Interval

Boundary

Figure 7 Node generation in one of buckets

Figure 6 Example of bucket decomposition

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

2.1.5 Node generation in each parallel processing domain
A rectangular parallelepiped, which is initially prepared on bucket decomposition (i.e. a

domain not re-decomposed by the octree method), is regarded as a parallel processing domain.
As shown in Figure 8, a child PE receives a parallel processing domain which is not processed
yet from the parent PE and starts the process at each time when it finishes previous one, so
that the load can be dynamically distributed. As shown in Figure 9, the nodes are generated in
advance on the boundary between each parallel processing domain and shared by the
neighboring domain. More clearly, the nodes are generated in the following order: on vertices,
on edges, on faces and inside of the domain. By generating the nodes on the boundary surfaces
in advance, nodes inside the domain can be generated independently. Because of sharing the
nodes, the neighboring domains have to communicate; the amount of the communication
fairly depends on how to distribute the precessing domain to each child PE. The parent PE
manages to distribute the domains to child PEs so that each domain is connected and
boundaries with other domains remain as small as possible.

2.1.6 Parallel Delaunay method
As shown in Figure 10, Delaunay tetrahedron decomposition is performed for each parallel

processing domain with using nodes generated in parallel. A boundary-constraint-Delaunay
method (see [J. Conraud, 1995]) is used in order to make the same triangles shared on the

Data

Parent PE

Child PE

Figure 8 Dynamic load distribution

Figure 9 Node generation on a boundary surface between parallel processing domains

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

boundary surface between neighboring domains. Here the boundaries are expressed only by
planes. If they have the same nodal pattern, the same triangles appear on the boundary surface.
Namely, when each domain is decomposed into Delaunay tetrahedrons, the triangles on
boundary surfaces satisfy the Delaunay conditions on the plane. After checking
inconsistencies due to degeneration etc. the meshes in neighboring domains are connected to
make whole meshes. Among several Delaunay-tetrahedral-decomposition methods such as the
successive attach method or the decomposed rule method, the successive attach method by
Watson's algorithm [D. F. Watson, 1981] is used in this system. It is noted that an element-
generation time can also be approximately proportional to the number of the nodes in the
domain, if the node-attaching order is adequately designed. That is, the node is attached to
each bucket at the first time when a tetrahedron which includes the node in the circumscribed
circle, is found. The search region can be approximately restricted to the inside of the bucket
and the CPU time is proportional to the number of nodes in the domain.

2.1.7 Smoothing operation
The generated elements are checked with their aspect ratio, the dihedral angle etc. and the

found distortion is remedied using a smoothing method such as Laplacian smoothing
technique. Furthermore, since the method described above generates nodes on the boundaries
of the parallel processing domain with top priority, nodes may not be generated on the
boundaries of the analysis domains. Therefore the nodal pattern should be corrected so that
the nodes stay on the analysis boundaries.

Boundary

Figure 10 Tetrahedron decomposition in each parallel processing domain

Figure 11 smoothing operation

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

2.1.8 Flow of process
1. Define a whole analysis model. Define a geometric model using one of commercial

geometric modelers. Then Attach node density patterns and boundary conditions to the
geometry model.

2. Convert geometry data including free-form surfaces into polygon patch data.
3. Calculate global node density distribution using fuzzy knowledge processing.
4. Generate nodes inside the analysis domain, on its boundary surface, edges and vertices

using the bucketing method.
5. Generate tetrahedral elements using the Delaunay triangulation technique.
6. Remedy distortion of elements and mismatch elements using the Laplacian smoothing

technique and others.

 1. Definition of Analysis Model

 2. Conversion of geometry data

 3. Calculation of Global Node Density Distribution

 4. Node Generation Based on Bucketing Method

 5. Element Generation Based on Delaunay Triangulation

 6. Smoothing Operation

 FEM Solver

Figure 12 Flow of process

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

2.2 Implementation
As for the GUI part, Windows NT Ver 4.0, DESIGNBASE Ver 5.2 and C++ (VC++ Ver

4.2) are used as OS, a generic CAD library, and a developing language, respectively. On the
parallel processing environment, an Alpha 533 MHz (with 2MB cache, 256MB RAM and
2GB HD) cluster, Linux, C++ (g++ ver 2.7.2) and MPI are used as OS, a developing
language and a parallel processing library, respectively.

3. RESULTS AND DISCUSSIONS
Figures 13 and 14 show examples of tetrahedral meshes. They are generated using one PE.

Figures 15 and 16 show histograms of aspect ratio and dihedral angle. Almost all aspect ratios
are lower than 4.0 and even the worst value is around 10.0. These are rather good results. The
dihedral angles tend to concentrate to 90, however this can be avoided by changing the
method generating candidate points on the node generation process. Also, as shown in Figures
17 and 18, the CPU time is almost proportional to the number of nodes both on the node and
element generation processes.

Figure 13 Sample1 (Gear : 20000 Nodes)

Figure 14 Sample2 (Nozzle : 15000 Nodes)

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

Maximum Minimum
Aspect ratio 10.751 1.0169

Dihedral angle 178.92 71.318

Figure 15 Aspect ratio and Dihedral angle (Sample1:Gear)

0

500

1000

1500

2000

2500

1 2 3 4

Aspect Ratio

N
um

be
r o

f E
le

m
en

ts

0

1000

2000

3000

4000

5000

6000

7000

70 80 90 100 110 120 130 140 150 160 170 180

Dihedral Angle (degree)

N
um

be
r o

f E
le

m
en

ts

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

Maximum Minimum
Aspect ratio 10.704 1.02382

Dihedral angle 178.916 71.7479

Figure 16 Aspect ratio and Dihedral angle (Sample2:Nozzle)

0

200

400

600

800

1000

1 2 3 4

Aspect Ratio

N
um

be
r o

f E
le

m
en

ts

0

100

200

300

400

500

600

70 80 90 100 110 120 130 140 150 160 170 180

Dihedral Angle (degree)

N
um

be
r o

f E
le

m
en

ts

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

0
10
20
30
40
50
60
70
80
90

100

0 10000 20000 30000 40000 50000

Number of nodes

C
PU

 ti
m

e
(S

EC
)

Figure 18 CPU time for element generation (DEC Alpha 533MHz)

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000
Number of nodes

C
PU

 ti
m

e
(S

EC
)

Figure 17 CPU time for node generation (DEC Alpha 533MHz)

AUTOMATIC GENERATION OF TETRAHEDRAL MESH WITH TEN-MILLION DOFS

4. CONCLUSION
This report described a system for automatic parallel generation of tetrahedral mesh with

ten-million DOFs. Fuzzy knowledge processing is adopted to well control a node density
distribution, while the bucketing method and Delaunay triangulation are used to generate
nodes and elements, respectively. These processes are parallelized. GUI is constracted on a
front-end PC with Windows, and a PC cluster with Linux is adoped to deal with all the
parallel processes. Furthermore, meshes with one-million-scale degrees of freedom is
generated on 1 CPU with using a part of the system, and satisfactory results are obtained with
respect to the quality of the meshes and the CPU time.

REFERENCES
Yagawa, G., Kawai, H., Yoshimura, S. (1993), Parallel CAE System For Large-Scale 3-D
Finite Element Analyses, Proc.12 SMiRT, Stuttgart, Germany, B, pp183-194
Yoshimura, S., Lee, J.S., Yagawa, G. (1995), Automated Analysis of Stress Intensity Factor
for 3-D Cracks, Proc.5th JSME/ASME Joint International Conference on Nuclear Engineering,
Kyoto, Japan, 1, pp.357-362
Yagawa, G., Yoshimura, S., Nakao, K. (1995), Automatic Mesh Generation of Complex
Geometries Based on Fuzzy Knowledge Processing and Computational Geometry, Integrated
Computer-Aided Engineering, 2, pp.265-280
Watson, D.F. (1981), Computing the n-Dimensional Delaunay Tessellation with Application
to Voronoi Polytopes, The Computer Journal, 24, pp.167-172
Conraud, J. (1995), Lazy constrained tetrahedralization, Proc.4th International Meshing
Roundtable, Sandia National Laboratories, pp.15-26

