

ADVENTURE_Thermal

Steady / Non-steady Heat Conduction Analysis with HDDM

Version: 2.0

User's Manual

March, 2016

ADVENTURE Project

 ADVENTURE SYSTEM

 2

Contents

Preface to the new version .. 5

1. Introduction ... 6

1.1. Program Features .. 6

1.2. Operational Environments .. 6

1.3. Program Compilation and Installation .. 7

1.3.1 File Extraction from Archive .. 7

1.3.2. Substructures of Directories .. 7

1.3.3. Compilation Method .. 7

1.3.4 Installation of Executable Module .. 8

1.4. Program Execution .. 9

2. Parallel Processing and Analysis Solver ... 10

2.1. Parallel Processing .. 10

2.2. Characteristics of solver ... 12

2.3 Sparse Matrix Storage Schemes .. 13

2.4 ADVENTURE_Metis .. 14

3. Analysis Algorithm ... 15

3.1. Transient Analysis .. 17

3.2. Input / Output Data ... 17

3.3. Standard of Temperature Units... 18

3.4. Boundary Conditions .. 18

3.5. Material Properties ... 18

3.6. Output Results .. 19

4. Program Compilation and Installation ... 20

4.1. Compile .. 20

4.2. Installation of Executable Module .. 21

5. Program Execution .. 23

5.1. Names of Input / Output Files .. 23

5.2. Command Options .. 24

5.2.1. Options for Transient Analysis .. 24

5.2.2. Options Related to Elements ... 24

5.2.3. Options for Iteration Control ... 24

5.2.4. Options for Sparse Matrix Storage Formats .. 25

5.2.5. Options for different solvers .. 26

5.2.6. Options for Output Filename Specification ... 27

5.2.7. Other Options .. 28

Appendix .. 29

A. Supported Elements .. 29

A.1. Linear Tetrahedral Element ... 29

A.2. Quadratic Tetrahedral Element .. 30

A.3. Linear Triangular Element ... 31

A.4. Quadratic Triangular Element ... 32

B. Setup of Boundary Conditions .. 33

B.1. Boundary Conditions for Temperature .. 33

B.2. Boundary Conditions for Heat Flux ... 34

B.3. Boundary Conditions for Heat Convection.. 35

B.4. Boundary Conditions for Heat Radiation .. 35

 ADVENTURE SYSTEM

 3

B.5 Example of Material Properties Data:.. 36

C. Tool Program .. 37

C.1 makefem_thermal ... 37

C.2 pfemsolv .. 38

D. libsparse .. 39

Sparse Matrix Storage Schemes ... 42

E. Numerical Examples .. 47

E.1 Numerical examples with temperature boundary conditions 47

E.2 Numerical examples with flux boundary conditions 50

E.3 Numerical examples with convection boundary conditions 53

E.4 Numerical examples with internal heat generation .. 56

E.5 Numerical examples with multi material model .. 59

E.6 Numerical examples of with surface information .. 63

E.7 Numerical examples of large scale analysis... 65

References .. 66

 List of Figures

Figure 1. Hierarchical Domain Decomposition .. 10

Figure 2. Adjustment of Domain to CPUs (Single version) ... 11

Figure 3. Adjustment of Domains to CPUs (Static load distribution version) 11

Figure 4. Adjustment of Domains to CPUs (Dynamic load distribution version) 12

Figure 5. Algorithm of Analysis Using ADVENTURE_Thermal Module. 16

Figure 6. Algorithm of Transient Analysis ... 17

Figure 7. Input and Output Files ... 18

Figure 8. Linear Tetrahedral Element... 29

Figure 9. Quadratic Tetrahedral Element ... 30

Figure 10. Linear Triangular Element .. 31

Figure 11. Quadratic Triangular Element ... 32

Figure 12. Example of temperature boundary condition set up 48

Figure 13. Temperature distribution using ADVENTURE_Auto 49

Figure 14. Analysis Model (Cross section of a cylinder) ... 50

Figure 15. Temperature distribution using ADVENTURE_Auto 52

Figure 16. Example of convection boundary condition set up 54

Figure 17. Temperature distribution using ADVENTURE_Auto 55

Figure 18. Example of convection boundary condition set up 57

Figure 19. Temperature distribution using ADVENTURE_Auto 58

Figure 20. Volume 1 Volume 0 ... 60

Figure 21. Example of convection boundary condition set up at the outer surface 60

Figure 22. Temperature distribution using ADVENTURE_Auto 62

Figure 23 Part of cooling stave ... 63

Figure 24 Temperature distribution using Advauto_thermalview 64

Figure 25. Domain Decomposition of HTTR Model ... 65

Figure 26. Temperature Distribution Visualized by ADVENTURE_Visual (Old) 65

 ADVENTURE SYSTEM

 4

List of Tables

Table 1. Contents of Directories ... 7
Table 2. Integral Points of Linear Tetrahedral Element ... 29
Table 3. Integral Points of Linear Tetrahedral Element (4 integral points) 30
Table 4. Integral Points of Linear Tetrahedral Element (5 integral points) 30

Table 5. Integral Points of Linear Triangular Element ... 31
Table 6. Integral Points of Quadratic Triangular Element ... 32

 ADVENTURE SYSTEM

 5

Preface to the new version

It is a blessing that we have added new functions in the AdvThermal-2.0.

Here are some highlights of the new features in this version.

 A sparse matrix library “libsparse” with various compressed sparse matrix

formate.

 Compressed Sparsed Row (CSR) is default sparse matrix storage schemes.

 Balancing Domain Decomposition in the single mode (advthermal-s).

 The CG solver in the single mode (advthermal-s).

 Galerkin Method for unsteady heat analysis

 Options for convection and radiation boundary conditions in makefem_thermal

 Options for all element heat source in makefem_thermal

 New example problems

 Options for writing no result, surface result only and surface-interface result

 A new tool “pfemsolv” to solve ineterior node given the information of surface

and interface nodes

 ADVENTURE SYSTEM

 6

1. Introduction
The current document contains information on the ADVENTURE_Thermal finite

element analysis solver designed in ADVENTURE Project [1] for analysis of steady

and non-steady heat conduction in solid using Hierarchical Domain Decomposition

Method with parallel data processing techniques.

1.1. Program Features
ADVENTURE_Thermal has the following features.

 ADVENTURE_Thermal supports the dynamic load distribution of CPUs in

parallel computing environments using the Hierarchical Domain Decomposition

method (HDDM).

 ADVENTURE_Thermal supports the Balancing Domain Decomposition

(BDD)[8] as CG preconditioner for HDDM solver.

 ADVENTUR_Thermal supports different sparse matrix storage schemes using

libsparse library.

 ADVENTURE_Thermal supports the single version where all calculations are

performed as a single process.

 ADVENTURE_Thermal supports steady and non-steady heat conduction

analyses.

 ADVENTURE_Thermal supports linear tetrahedral elements and quadratic

tetrahedral elements.

 ADVENTURE_Thermal operates in UNIX and Linux environments.

 ADVENTURE_Thermal uses the Message Passing Interface (MPI) library [6] for

parallel data processing.

1.2. Operational Environments
The ADVENTURE_Thermal operates in the following operational environments.

Operating system Unix, Linux

Data processing library MPI

 ADVENTURE SYSTEM

 7

1.3. Program Compilation and Installation
To compile the ADVENTUR_Thermal module, you need properly installed MPI

environment and ADVENTURE_IO libraries on your computer. The following

procedure should be followed to compile the ADVENTURE_Thermal module.

1.3.1 File Extraction from Archive
The necessary data are contained in AdvThermal-2.0.tar.gz. The directories described in

subsection 1.3.2 will be created after decompressing the archive file by using the

following command.

 gunzip -c AdvThermal-2.0.tar.gz | tar xvf -

1.3.2. Substructures of Directories
After decompressing the AdvThermal-2.0.tar.gz archive file, the directory

AdvThermal-2.0 will be created. The contents of AdvThermal-2.0 are shown in the

Table 1.

Table 1. Contents of Directories

Subdirectory Name Contents

hddmsrc Source file of ADVENTURE_Thermal

doc Documents (Including User’s Manual)

tools Tools for setting up boundary conditions

libfem Library for finite element method

Except the directories mentioned in Table 1, some files will be created in

AdvThermal-2.0 directory for auto configuration.

1.3.3. Compilation Method
(1). Install the ADVENTURE_IO module according to its User manual.

(2). Go to the top directory and execute the following command:

% ./configure

% make

After execution of shell script configure, all necessary computing environment will be

recorded into the Makefile.

The shell script configure uses the following options. The absolute path to the top

directory should be mentioned.

--with-advio=directory

This option is used to define the top directory of ADVENTURE_IO. Default is

“$HOME/ADVENTURE”.

--with-mpicc=command

This option is used to define the C compiler for MPI. The default is mpicc.

 ADVENTURE SYSTEM

 8

Parallel versions of ADVENTURE_Thermal will not be compiled if the C compiler for

MPI is not found.

--prefix=install_dir

This option is used to define the top directory specified by install_dir for program

installation. Only the executable modules will be installed in the directory

install_dir/bin. The default directory is /$HOME/ADVENTURE.

Other configure options will be described in Chapter 4.

1.3.4 Installation of Executable Module
Execute the command make install.

 % make install

The default directory for installation is $(HOME)/ADVENTURE/. To change the

directory for installation, execute the command

 % make install prefix=<install_dir>

where the option <install_dir> should include a full path to the directory for

installation.

The following files will be installed.

bin/advthermal-s Executable module
bin/advthermal-p Executable module
bin/advthermal-h Executable module
bin/makefem_thermal Tool for entire FEA model data
bin/pfemsolv Interior dof solution

 tool using surface and interface

 dof
doc/AdvThermal/manual-jp.pdf User’s Manual in Japanese
doc/AdvThermal/manual-en.pdf User’s Manual in English
doc/AdvThermal/README.eucJP Brief information in Japanese
doc/AdvThermal/README Brief information in English
doc/AdvThermal/copyright Copyright agreement

 ADVENTURE SYSTEM

 9

1.4. Program Execution
The ADVENTURE_Thermal module can be executed in 3 versions. You do not need

mpirun to execute the single mode of ADVENTURE_Thermal. The command of

execution of 3 versions is described below.

Single mode

% advthermal-s [options] data_dir

Parallel mode with static job distribution using MPI

% mpirun [options for mpirun] advthermal-p [options] data_dir

Parallel mode with dynamic job distribution using MPI

% mpirun [options for mpirun] advthermal-h [options] data_dir

The options [options for mpirun] are specified for the mpirun. The options

[options] are specified for the ADVENTURE_Thermal executable (see Section 5.2 of

the current manual for details). The option data_dir should contain a name of the top

directory with data files for analysis (input/output directory).

Necessary options (mpirun)

 -np n : the number of machines (corresponding to the number of parts).

 -machinefile filename : The files contain the name of network machines.

Necessary options (advthermal_s or advthermal_p or advthermal_h)

 The options of 3 modes of ADVENTURE_Thermal will be described in Section 5.2.

 ADVENTURE SYSTEM

 10

2. Parallel Processing and Analysis Solver
ADVENTURE_Thermal can perform the steady and non-steady heat conduction

analyses with dynamic load distribution between CPUs using parallel data processing

techniques. These features will be described below.

2.1. Parallel Processing
ADVENTURE_Thermal uses the Hierarchical Domain Decomposition method to

provide parallel processing of analysis data. An entire-type model is decomposed in

two steps (Figure 1) by the ADVENTURE_Metis module prior to execution of

ADVENTURE_Thermal. A large decomposed unit of the first hierarchy level refers

as Part, and smaller units of the decomposed Part (2nd hierarchy level) refer as

Subdomains. The details are given in the User’s Manual of the ADVENTURE_Metis

module. ADVENTURE_Thermal supports several methods of job distribution to use

the CPUs in the most efficient way. The Message Passing Interface (MPI) library is

used for parallel data processing. The number of processes started at once depends on

user-defined environment.

Figure 1. Hierarchical Domain Decomposition

Entire-type Model

Decomposed Model

(Step 1)

Decomposed Model

(Step 2)

Parts

Subdomains

Part 1 Part 2 Part 3

 ADVENTURE SYSTEM

 11

The distributed package contains three versions of ADVENTURE_Thermal.

(1) Single version (advthermal-s)

 A single CPU does all calculations without parallel data processing. The

program can be compiled and executed without MPI. There are no limitations

on number of “Domains” and “Parts”. The model prepared for parallel

computation can be used for the single processors without adjustment

(Figure 2). In the single processor, the computational and data reprocessing

procedure for each “Part” occur in the same order as it would be occurred in

the parallel computing system. If the parallel computation is not performed

well the single version of the program can be used as a checker.

Figure 2. Adjustment of Domain to CPUs (Single version)

(2) Static job distribution version (advthermal-p)

 One CPU treats one Part and the processes are statically distributed

between CPUs as shown in Figure 3. The number of CPUs should

correspond to the number of “Parts”. This version works efficiently if all

nodes have the same performance (uniform system).

Figure 3. Adjustment of Domains to CPUs (Static load distribution version)

 ADVENTURE SYSTEM

 12

(3) Dynamic job distribution version (advthermal-h)

 The processes are dynamically distributed between CPUs. All CPUs are subdivided

into Parent CPUs and Child CPUs. The Child CPUs calculate “Domains” and the

Parent CPUs collect the calculated information. The number of available CPUs

should be more than the number of “Parts”. Each “Part” will be assigned to one CPU,

and the remained CPUs will be used for calculations of “Domains” (Figure 4).

Figure 4. Adjustment of Domains to CPUs (Dynamic load distribution version)

2.2. Characteristics of solver
ADVENTURE_Thermal uses four types of solver to solve the linear equations those

come after finite element analysis by using HDDM system. The types of linear equation

solver are divided according to the preconditioning techniques used in iterative method.

 HDDM solver:

This solver does not use any special preconditioner through the iterative method of

HDDM system. This solver uses Diagonal Scaling through the iterative method of

HDDM system using specific solver option.

 ADVENTURE SYSTEM

 13

 BDD solver:

In ADVENTURE_Thermal module, direct method is used to obtain the temperature

inside “Subdomain” and iterative method is used to obtain the temperature on the

boundaries between subdomains.

This module uses the HDDM system, which satisfies continuity among subdomains

through iterative calculations such as Conjugate Gradient (CG) method. So it is

absolutely necessary to reduce the number of iterations with a preconditioning

technique especially for large problems. This solver uses a powerful CG

preconditioner known as Balancing Domain Decomposition (BDD)[8] to meet this

need. The BDD is a variation of Neumann-Neumann preconditioner. It solves a

“coarse problem” with few degrees of freedom per subdomain in each CG iteration.

For heat conductivity analysis [9], this solver uses one degree of freedom per

subdomain to construct the coarse matrix. The coarse matrix is solved by parallel

LU decomposition. By using this solver, the number of iteration as well as

computational time is reduced comparing with HDDM solver.

In this solver a preconditioning matrix is made in the first CG loop. So a portion of

computational time is consumed to make the preconditioner. Some times it is about

15-25% of total computational time. The time per iteration for BDD solver is more

than that of HDDM solver. Though time per iteration becomes larger, BDD is an

efficient solver as it reduces the total number of iterations. BDD solver needs more

memory then HDDM solver. Users have high memory computational environment

are suggested to use BDD solver.

BDD must solve a Neumann-Neumann problem in each iteration. In

Neumann-Neumann problem the matrix that represents the subdomain or

subproblem may be singular. To overcome this difficulties BDD solver uses a

regularization parameter.

 BDD-DIAG solver:

This solver is similar to BDD. But in this solver it does not need to solve the

Neumann-Neumann problem in Balancing Domain Decomposition algorithm. This

solver requires less memory than the BDD solver. Depending on the model, it may

differ the computational time with that of BDD solver. The users who do not have

computational environment with enough memory to use BDD solver are

recommended to use BDD-DIAG solver. By testing some model it has been

found that the ratio of memory required for BDD-DIAG solver to that of BDD

solver is 7/10.

 CG solver:

This solver uses the Conjugate Gradient method to solve the whole problem. Only

advthermal-s supports this solver. This solver is suitable for a single processor. The

number of subdomains per part should be one for this solver.

2.3 Sparse Matrix Storage Schemes
In order to take the advantage of the large number of zero elements, special formats are

required to store sparse matrices. In this module, for symmetry sparse matrix, only

triangular part of the matrix is stored. The main goal is to represent only the non-zero

 ADVENTURE SYSTEM

 14

elements (nnz) considering the memory requirements and computation time. Several

sparse matrices storage formats are listed below.

 Compressed Sparse Row (CSR)

 Coordinate Storage (COO)

 Diagonal Coordinate Storage (DCOO)

 Compressed Sparse Column (CSC)

 Modified Compressed Sparse Row (MSR)

 Incremental Compressed Sparse Row (ICSR)

 Variable Block Compressed Sparse Row (VBCSR)

 Diagonal Block Compressed Sparse Row (DBCSR)

Details of these storage formats are discussed in the LIBSPARSE library document.

2.4 ADVENTURE_Metis
The computational performance of ADVENTURE_Thermal module depends on the

proper domain decomposition using the ADVENTURE_Metis. To execute the

ADVENTURE_Metis the number of parts and number of subdomains should be

determined before. Basically, the number of “Parts”should be decided based on the

method used for parallel processing, the number of nodes used in network, and the

computing environments. The number of “Domains”should be decided based on the

memory used of computational processes. It has been found that as more detailed

domain decomposition is done less memory is required. In case of static job distribution

(advthermal-p), good performance can be achieved by using BDD or BDD_DIAG if the

number of elements in one domain lies 180 to 370 while in case of dynamic job

distribution (advthermal-h) the number of element in one domain lies 350 to 450. This

range has been found by investigating some test models. For other models this rang may

be semi optimum. The total number of domains does not effect on the number of

iterations for BDD and BDD-DIAG solver.

The number of elements in “Domain” that should be created by ADVENTURE_Metis

module can be calculated using the following equation.

n = Nelement / (Npart * Ndomain)

where: n is the number of elements in the considered “Domain”,

 Nelement is the total number of elements,

 Npart is the total number of “Parts”,

 Ndomain is the total number of “Domains” in the “Parts”.

Compared with the static job distribution method, much data transfer accomplished

between the “Parent” and the “Child” in case of dynamic job distribution method. The

static job distribution method results in better performance for uniform computer

environments.

 ADVENTURE SYSTEM

 15

3. Analysis Algorithm
The algorithm of analysis using the ADVENTURE_Thermal module is shown in

Figure 5.

(1) Creation of mesh data.

 Mesh of the entire-type model data are prepared by

 ADVENTURE_TetMesh.

(2) Setting of boundary conditions.

Boundary conditions are set to mesh using the pre-processor module

ADVENTURE_BCtool.

(3) Conversion of analysis model data

The mesh data of the entire model and boundary conditions data are

converted to entire FEA model data (adventure format) using the makefem

tool of ADVENTURE_BCtool. The makefem_thermal tool of AdvThermal

can also be used for this purpose.

(4) Domain decomposition.

Domain decomposition of the entire-type analysis model is done by

ADVENTURE_Metis.

% mpirun [mpi_options] adventure_metis -difn 1 [options]

model_filename directory_name div_num

The degree-of-freedom used for nodal displacements in static analyses of

solids is 3. However, the degree-of-freedom used for temperature in heat

conduction analyses should be 1. The necessary option –difn 1 is used to

set the degree-of-freedom for inner boundary nodes to 1.

(5) Heat conduction analysis.

The HDDM-type model data are analyzed by finite element analysis solver

ADVENTURE_Thermal.

(6) Visualization of analysis results.

The analysis results can be visualized using ADVENTURE_PostTool or

advauto_thermalview.

 ADVENTURE SYSTEM

 16

Figure 5. Algorithm of Analysis Using ADVENTURE_Thermal Module.

 ADVENTURE SYSTEM

 17

3.1. Transient Analysis
The backward finite difference approximation and the Crank-Nicolson method can be

used in transient analyses. The algorithm is shown in Figure 6. It includes 2 loops.

Time integration iterations are performed by the outer loop and iterative calculations by

the CG method based on the hierarchical domain decomposition are performed by the

inner loop.

Figure 6. Algorithm of Transient Analysis

3.2. Input / Output Data
The files used by ADVENTURE_Thermal are shown in Figure 7. All files, except the

job log file, have the binary ADVENTURE format. The data for one Part are stored in

one file.

The ADVENTURE_Thermal module uses the input HDDM-type model data

(hierarchically domain-decomposed data) files prepared by ADVENTURE_Metis.

The calculated temperature is stored for all nodes in HDDM-type output data files.

The output can be done for each step of time integration. Calculations can be

terminated with saving of the data into temporary restart files and restarted using the

restart data files. Two kinds of restart files can be used.

1). Restart file for CG loop. Used for steady analyses.

2). Restart file for time integration loop. Used for transient analyses.

If the user uses BDD solver then another restart file for coarse matrix (LU

decomposition) can be used.

Start

Analysis of each Subdomain

Updating of the boundary conditions

between Subdomains

Updating of node temperature

End

CG loop Hierarchical domain

decomposition method

Time integration loop

 ADVENTURE SYSTEM

 18

Figure 7. Input and Output Files

3.3. Standard of Temperature Units

The temperature data for ADVENTURE_Thermal must have the unit of degree Celsius.

Other temperature units are not supported.

3.4. Boundary Conditions

The following boundary conditions can be set.

 Specified temperature (set for nodes)

 Specified heat flux (set for nodes)

 Specified heat convection (set for surface)

 Specified heat radiation (set for surface; only for transient analysis)

The boundary conditions for specified heat radiation can be used only for transient

analyses.

3.5. Material Properties

The following isotropic material properties can be specified.

 Thermal conductivity

 Specific heat (data necessary for transient analysis)

 Density (data necessary for transient analysis)

 Stefan-Boltzmann constant (data needed for the specified heat

radiation boundary conditions)

 Calorific value

Analysis solver

ADVENTURE_Thermal

HDDM-type model data

Log output

file

Restart file for

time integration

Restart file for

CG iterations

Output file with

final results

Output file with results of time

integration steps

 ADVENTURE SYSTEM

 19

3.6. Output Results

The following values can be saved to files.

 All nodal temperature values

 All nodal flux values

 Surface and inteface nodal tempearture values

 Surface and interface nodal flux values.

 Surface nodal temperature values

 Suface nodal flux values

 One file of ADVENTURE binary format contains information on one Part.

 ADVENTURE SYSTEM

 20

 4. Program Compilation and Installation

 4.1. Compile
To compile the ADVENUTRE_Thermal module, you need properly installed MPI

environment and ADVENTURE_IO libraries on your computer.

The following procedure should be followed to compile the ADVENTURE_Thermal

module:

1. ./configure

2. make

Both of the commands should be executed from the top directory of

ADVENTURE_Thermal module. After execution of shell script configure, all

necessary computing environment will be recorded into the Makefile.

The shell script configure uses the following options. The absolute path to the top

directory should be mentioned.

--with-advio=directory

This option is used to define the top directory of ADVENTURE_IO. Default is

“$HOME/ADVENTURE”.

--with-mpicc=command

This option is used to define the C compiler for MPI. The default is mpicc.

Parallel versions of ADVENTURE_Thermal will not be compiled if the C compiler for

MPI is not found.

--with-mpi-cflags=CFLAGS

The options for C compiler are specified by CFLAGS if the program is compiled for

MPI environment. For example, the following statement can be used if it is necessary to

specify the include files for MPI.

--with-mpi-cflags=”-I/usr/local/include/mpi”

The options specified here by CFLAGS for MPI compiler can be used together with the

options for the single version of the program (options for CC compiler).

--with-mpi-libs =LIBS

This option is used to define the MPI links. For example, the following statement can be

used to define the MPI libraries.

--with-mpi-libs=”-L/usr/local/lib/mpi –lmpi”

The necessary options specified here for MPI link, can be used together with the

necessary options for the single version of the program (options for CC compiler).

--enable-optimize
The optimization for compilation is performed. If any other options are required for

optimization, the following option should be used.

 ADVENTURE SYSTEM

 21

--enable-optimize=CFLAGS

The optimization for compilation is performed using the options specified by CFLAGS.

--prefix=install_dir

This option is used to define the top directory specified by install_dir for program

installation. Only the executable modules will be installed in the directory

install_dir/bin. The default directory is /$HOME/ADVENTURE.

If the compilation using the supplied configure shell script is failed, the samples of

Makefile prepared in each subdirectory should be used for compilation.

Makefile.sample should be copied to Makefile in each directory contained

Makefile.sample. The Makefile.in.sample should also be copied to Makefile.in in the

top directory of ADVENTURE_Thermal module.

The following macros should be changed in the Makefile.in in accordance with the

concrete computational environment.

ADVSYS_DIR Top directory of ADVENTURE system

ADVIO_CONFIG Full path to ADVENTURE_IO script advsys-config

MPI_CC C compiler for MPI

MPI_LINKER C linker for MPI

CC C compiler

LINKER C linker

CFLAGS Options for optimization

 After changing the Makefile.in, execute the command make in the top

directory.

 % make

The files in different directory can also be compiled separately by executing make

command every time in each directory. In that case, the files located in the libfem

should be compiled before the files located in the directory hddmsrc.

4.2. Installation of Executable Module

 Execute the command make install.

 % make install

The default directory for installation is $(HOME)/ADVENTURE/. To change

the directory for installation, execute the command

 % make install prefix=<install_dir>

 ADVENTURE SYSTEM

 22

where the option <install_dir> should include a full path to the directory for

installation.

The following files will be installed.

bin/advthermal-s Executable module
bin/advthermal-p Executable module
bin/advthermal-h Executable module
bin/makefem_thermal Tool for entire FEA model data
bin/pfemsolv Interior dof solution tool using

 boundary and interface dof
doc/AdvThermal/manual-jp.pdf User’s Manual in Japanese
doc/AdvThermal/manual-en.pdf User’s Manual in English
doc/AdvThermal/README.eucJP Brief information in Japanese
doc/AdvThermal/README Brief information in English
doc/AdvThermal/copyright Copyright agreement

 ADVENTURE SYSTEM

 23

5. Program Execution
The ADVENTURE_Thermal module can be executed in 3 modes. To execute

ADVENTURE_Thermal with mpirun, use the following commands.

 Single mode

% advthermal-s [options] data_dir

 Parallel mode with static job distribution using MPI

% mpirun [options for mpirun] advthermal-p [options] data_dir

 Parallel mode with dynamic job distribution using MPI

% mpirun [options for mpirun] advthermal-h [options] data_dir

The options [options for mpirun] are specified for the mpirun. The options

[options] are specified for the ADVENTURE_Thermal executable (see Section 5.2 of

the current manual for details). The option data_dir should contain a name of the top

directory with data files for analysis (input/output directory).

5.1. Names of Input / Output Files
The default names of input and output files are presented below. The files are located

under the top directory defined by data_dir. Here, P indicates the Part number and S

indicates the step number of the time integration loop.

 HDDM-type analysis model file:

data_dir/model/advhddm_in_P.adv

 Analysis results (steady analysis):

data_dir/result/advhddm_out_P.adv

 Analysis results (transient analysis):

data_dir/result/advhddm_out_S_P.adv

 Restart file for CG loop:

data_dir/cg-res/advhddm_in_P.adv

 Restart file for time integration loop:

data_dir/result/advhddm_out_S_P.adv

 ADVENTURE SYSTEM

 24

5.2. Command Options
The following command options can be used.

5.2.1. Options for Transient Analysis
 -ns The option is used to execute the transient analysis.

It can be used with the following options.

 --cn The option specifies that the time integration will be

done by the Crank-Nicolson method. The default is

backward finite difference scheme.

 --gn The option specifies that the time integration will be

done by Galerkin method.

 --step n The option specifies the maximum number of

iterations for the time integration loop. The default

number is 10.

 --out-interval n The option specifies that the output results of each n

step will be printed. There is no default value; only

the results of the last step are printed.

 --dt x The option specifies the range x of time interval. The

default value is 1.0.

 --init x The option specifies the initial temperature x for all

nodes. The default value is 0 oC.

 --use-resin n The option specifies the time integration step n from

which the analysis will be restarted.

5.2.2. Options Related to Elements
 -tet10-integ5 The option is used to set 5 integral points for quadratic

tetrahedral elements. The default integration is done

with 4 integral points.

5.2.3. Options for Iteration Control
ADVENTURE_Thermal uses the CG method to solve the linear equations of stiffness

matrixes. The following options can be used to control the iterations by CG method.

 -cg-tol x The option specifies the tolerance for convergence of

iterations. The iterations stop when the relative error

(ratio of the current CG residual to the initial CG

residual) becomes smaller than the tolerance x. The

 ADVENTURE SYSTEM

 25

default value is 1.0x10-6.

 -cgloop-max n The option specifies the maximum number of CG

iterations. The default value is 1000.

 -use-cg-resin The option specifies from which step the CG restart

file will be read to restart the analysis. This option

can be used only for steady analyses. No restart file

will be read by default.

 -resout-cglast The option specifies that the CG restart file will be

created at the last step of CG loop. The file will be

created whether the iterations have been converged or

the limit number of iterations has been exceeded

without convergence. No restart file is created by

default.

5.2.4. Options for Sparse Matrix Storage Formats
These options use functions from LIBSPARSE library (details are Appendix D)

 -keep-kmat-csr

This option specifies that the subdomain matrix will

be stored as CSR format. This is default option.

 -keep-kmat-coo

This option specifies that the subdomain matrix will

be stored as COO format.

 -keep-kmat-msr

This option specifies that the subdomain matrix will

be stored as MSR format.

 -keep-kmat-csc

This option specifies that the subdomain matrix will

be stored as CSC format.

 -keep-kmat-icsr

This option specifies that the subdomain matrix will

be stored as ICSR format.

 -keep-kmat-vbcsr

This option specifies that the subdomain matrix will

be stored as VBCSR format.

 -keep-kmat-dcoo

This option specifies that the subdomain matrix will

be stored as DCOO format.

 -keep-kmat-dbcsr

This option specifies that the subdomain matrix will

be stored as DBCSR format. This option is used for

only ADVENTURE_Solid.

 -keep-kmat-sky This option specifies that the subdomain matrix will

be stored as skyline format.

 ADVENTURE SYSTEM

 26

5.2.5. Options for different solvers
ADVENTURE_Thermal uses the BDD solver to solve the linear equations of stiffness

matrix. The following options can be used to control the BDD solver

 -solver cg This options specifies that the whole problem will

be solved by CG method. (only for advthermal-s).

 -solver hddm This options specifies that a diagonal

preconditioner will be used in PCG method in the

HDDM system.

 -solver bdd

This option specifies that the BDD solver will be

used.

 -solver bdd-diag This option specifies that the BDD solver will be

used with diagonal scaling in the

Neumann-Neumann problem inside the BDD

algorithm.

 -solver bdd –iLU This option specifies that the IBDD will be used.

 -solver bdd-diag

-iLU

This option specifies that IBDD-DIAG [11] will be

used.

 -resout-bdd-cmat This option specifies that the coarse matrix after LU

decomposition will be saved in a file for restart. No

file is created by default.

 -use-bdd-cmat This option specifies that coarse-matrix will be read

from the file to reuse.

 -bdd-dir dir This option specifies name dir of directory for

coarse-matrix input/output data. The default name

is bdd. This option is used after using the

–resout-bdd-cmat option.

 -bdd-cmat-file file This option specifies the name of coarse-matrix

input/output files to restart. The default is

advhbdd_cmat_* where ‘* ‘is the processor

number. This option is used after using the

-resout-bdd-cmat option.

 -ginv-alpha ｘ This option specifies the value of factor for

alpha-regularization. The default value is 10-3. You

can use this option only if you use BDD solver.

 ADVENTURE SYSTEM

 27

5.2.6. Options for Output Filename Specification
Usually, the user should set only the name of the top directory for analysis data.

However, the filenames, other than the default filenames, can be specified adding the

following options to the command line. Here, S is used for the step number of time

integration and P is the Part’s number.

 -model-file file The option specifies the name of input data files

with analysis model. The characters _P.adv will

be added to the filename set by the option file.

The default filename is advhddm_in.

 -model-dir dir The option specifies the name dir of directory with

input data. The default name is model.

 -result-file file The option specifies the name of output results

files. The characters _P.adv (for steady

analysis) or _S_P.adv (for transient analysis) will

be added to the filename set by file. The default

filename is advhddm_out.

 -result-dir dir The option specifies the name dir of directory with

output results. The default name is result.

 -ns-resin-file file The option specifies the filename of input restart

files for time integration steps. The characters

_S_P.adv will be added to the filename set by

file. The default filename is advhddm_out.

 -ns-resin-dir dir The option specifies the name dir of directory with

restart files for time integration steps. The default

name is result.

 -cg-resin-file file The option specifies the filename of input restart

files for CG steps. The characters _P.adv will

be added to the filename set by file. The default

filename is advhddm_cgres.

 -cg-resin-dir dir The option specifies the name dir of directory with

restart files for CG steps. The default name is

cg-res.

 -cg-resout-file file The option specifies the filename of output restart

files for CG steps. The characters _P.adv will

be added to the filename set by file. The default

filename is advhddm_cgres.

 ADVENTURE SYSTEM

 28

 -cg-resout-dir dir The option specifies the name dir of directory with

restart files for CG steps. The default name is

cg-res.

 -result-surface-int

erface

The option outputs the external surface and

interface results for the hddm system. For this

option the advFile (before metis) should be created

by makefem_thermal using –with-surface option.

 -result-surface The option outputs the external surface results for

the hddm system. For this option the advFile

(before metis) should be created by

makefem_thermal using –with-surface option.

 -no-result With this options no result will be printed in the

result file.

5.2.7. Other Options
 -file-para The option sets the parallel data processing mode.

An exclusive data control is used for default mode.

 -memlimit n The option specifies the upper limit of memory n [in

Mbytes], which can be used for one process. If this

limit is exceeded, the process will be terminated. The

default value is 256 [Mbytes].

 -help or -h These options are used to display the help information.

 -version or -v These options are used to display the version of the

code.

 -help-ns This option is used to display the help information on

possible control options for transient analysis.

 -help-cg This option is used to display the help information on

possible control options for CG iterations.

 -help-bdd This option is used to display the help information on

possible control options for BDD solver.

 ADVENTURE SYSTEM

 29

Appendix

A. Supported Elements
ADVENTURE_Thermal supports only linear and quadratic tetrahedral elements.

However, to set boundary conditions for heat convection and heat radiation, the

stiffness matrixes should be created for the boundary surfaces of model. In the case of

linear tetrahedral elements, the integration is performed for the linear triangular

elements formed from the surface nodes, and in the case of quadratic tetrahedral

elements, the integration is performed for the quadratic triangular elements formed from

the surface nodes.

A.1. Linear Tetrahedral Element
(1). Nodes. The element contains 4 nodes with connectivity and numbering shown in

Figure 8.

Figure 8. Linear Tetrahedral Element

(2). Integral points. The element has 1 integral point. The integral point P has the

following volumetric coordinates (L0, L1, L2, L3).

L0 = volume of tetrahedron P123 / volume of tetrahedron 0123 (1)

L1 = volume of tetrahedron P023 / volume of tetrahedron 0123 (2)

L2 = volume of tetrahedron P013 / volume of tetrahedron 0123 (3)

L3 = volume of tetrahedron P012 / volume of tetrahedron 0123 (4)

Table 2. Integral Points of Linear Tetrahedral Element

Integral point number L0 L1 L2 L3

0 1/4 1/4 1/4 1/4

0

1

3

P

2

Primary node

 ADVENTURE SYSTEM

 30

A.2. Quadratic Tetrahedral Element
(1). Nodes. The element contains 10 nodes with connectivity and numbering shown in

Figure 9.

Figure 9. Quadratic Tetrahedral Element

(2). Integral points. The element has 4 integral points (default). It can be changed to

5 by command options. The integral point P has the following

volumetric coordinates (L0, L1, L2, L3).

L0 = volume of tetrahedron P123 / volume of tetrahedron 0123 (5)

L1 = volume of tetrahedron P023 / volume of tetrahedron 0123 (6)

L2 = volume of tetrahedron P013 / volume of tetrahedron 0123 (7)

L3 = volume of tetrahedron P012 / volume of tetrahedron 0123 (8)

Table 3. Integral Points of Linear Tetrahedral Element (4 integral points)

Integral point number L0 L1 L2 L3

0

1

2

3

 = 0.58541019662496845446

 = 0.13819660112501051518

Table 4. Integral Points of Linear Tetrahedral Element (5 integral points)

Integral point number L0 L1 L2 L3

0 1/4 1/4 1/4 1/4

1 1/6 1/2 1/6 1/6

2 1/6 1/6 1/2 1/6

3 1/6 1/6 1/6 1/2

4 1/2 1/2 1/6 1/6

Primary node Secondary node

0

1

3

P

2

7

4

8

6
5

9

 ADVENTURE SYSTEM

 31

A.3. Linear Triangular Element
The linear triangular elements are used for integration when it is necessary to set the

convection and radiation boundary conditions for linear tetrahedral elements.

(1). Nodes. The element contains 3 nodes with connectivity and numbering shown in

Figure10.

Figure 10. Linear Triangular Element

(2). Integral points. The element has 1 integral point. The integral point P has the

following volumetric coordinates (L0, L1, L2).

L0 = area of triangular P12 / area of triangular 012 (9)

L1 = area of triangular P02 / area of triangular 012 (10)

L2 = area of triangular P01 / area of triangular 012 (11)

Table 5. Integral Points of Linear Triangular Element

Integral point number L0 L1 L2

0 1/3 1/3 1/3

0

1

P

2

Primary node

 ADVENTURE SYSTEM

 32

A.4. Quadratic Triangular Element
The quadratic triangular elements are used for integration when it is necessary to set the

convection and radiation boundary conditions for quadratic tetrahedral elements.

(1). Nodes. The element contains 6 nodes with connectivity and numbering shown in

Figure 11.

Figure 11. Quadratic Triangular Element

(2). Integral points. The element has 3 integral points. The integral point P has the

following volumetric coordinates (L0, L1, L2).

L0 = area of triangular P12 / area of triangular 012 (12)

L1 = area of triangular P02 / area of triangular 012 (13)

L2 = area of triangular P01 / area of triangular 012 (14)

Table 6. Integral Points of Quadratic Triangular Element

Integral point number L0 L1 L2

0 1/2 1/2 0

1 0 1/2 1/2

2 1/2 0 1/2

Primary node Secondary node

0

1

P

2

4

3

5

 ADVENTURE SYSTEM

 33

B. Setup of Boundary Conditions
The format of boundary condition data, which is used by ADVENTURE_Thermal will

be presented below on examples.

B.1. Boundary Conditions for Temperature

Example
--

[Properties]

1: content_type=FEGenericAttribute

2: num_items=81

3: fega_type=NodeVariable

4: label=Temperature

5: format=i4f8

6: index_byte=4

[Data]

0 0 1.000000e+02

1 0 1.000000e+02

3 0 1.000000e+02

58 0 1.000000e+02

59 0 1.000000e+02

60 0 1.000000e+02

. . . .

. . . .

. . . .

The format of [Data] is (from left): the node number, the directional component,

and the temperature. Since, the degree-of-freedom of nodes for heat conduction

analysis is 1, setting of directional components, as it would be done for structure

mechanics analysis, is unnecessary. All directional components are set to 0.

 ADVENTURE SYSTEM

 34

B.2. Boundary Conditions for Heat Flux

Example
--

[Properties]

1: content_type=FEGenericAttribute

2: num_items=81

3: fega_type=NodeVariable

4: label=HeatFlux

5: format=i4f8

6: index_byte=4

[Data]

0 0 0.000000e+00

1 0 3.333333e+01

3 0 0.000000e+00

58 0 6.666666e+01

59 0 6.666666e+01

60 0 6.666666e+01

. . . .

. . . .

. . . .

The format of [Data] is (from left): the node number, the directional component,

and the heat flux. The heat flux shown here was converted from the surface heat flux

to the node-concentrated heat. If q is the heat flux per unit area S, the

node-concentrated heat for quadratic tetrahedral element can be presented as

 P0

 q0 = 0

 P1

 q1 = 0

 P2

 q2 = 0

 P3

 q3 = q x S/3

 P4

 q4 = q x S/3

 P5

 q5 = q x S/3

 ADVENTURE SYSTEM

 35

B.3. Boundary Conditions for Heat Convection

Example
--

[Properties]

1: content_type=FEGenericAttribute

2: num_items=8

3: fega_type=ElementVariable

4: label=HeatConvection

5: format=i4f8f8

6: index_byte=4

[Data]

0 1 1.000000e+02 1.231002e+02

5 3 1.000000e+02 1.231002e+02

. . . .

. . . .

. . . .

The format of [Data] is (from left): the element number, the surface number, the

outer contact temperature, and the heat convection coefficient. The numbering of

surfaces is done in a way that the surface numbers of each element been equal to the

number of the node opposite to the surface. For example, the surface number 0 is

opposite to the node number 0.

B.4. Boundary Conditions for Heat Radiation

Example
--

[Properties]

1: content_type=FEGenericAttribute

2: num_items=8

3: fega_type=ElementVariable

4: label=HeatRadiation

5: format=i4f8f8f8

6: index_byte=4

[Data]

0 1 1.000000e+02 1.000000e+00 1.000000e+00

5 3 1.000000e+02 1.000000e+00 1.000000e+00

. . . .

. . . .

. . . .

The format of [Data] is (from left): the element number, the surface number, the

temperature of emitter, the emissivity, and the geometrical viewfactor.

 ADVENTURE SYSTEM

 36

B.5 Example of Material Properties Data:

(1). An example of a one-material model

HeatConductivity 200

Density 10.0

SpecificHeat 100.0

StefanBoltzmanConstant 5.67e-6

InternalHeatGeneration 0.0

From the top: the heat conductivity coefficient, the material density, the specific

heat, the Stefan-Boltzmann constant, and the internal heat generation.

(2). An example of a multi-material model

#materialInfo

materialN 2

propertyN 5

HeatConductivity 100

Density 5000

SpecificHeat 41.78

StefanBoltzmanConstant 5.67e-6

InternalHeatGeneration 0.0

HeatConductivity 50

Density 2500

SpecificHeat 20.0

StefanBoltzmanConstant 5.67e-6

InternalHeatGeneration 0.0

#volumeInfo

volumeN 2

1

0

 ADVENTURE SYSTEM

 37

C. Tool Program

C.1 makefem_thermal
The boundary conditions and material properties attached to mesh can be saved in an

entire-type FEA model file of ADVENTURE binary format by using

makefem_thermal tool. This tool supports the following boundary conditions:

 1. Temperature

 2. Flux

 3. Convection

 4. Radiation

Input:

 Mesh data file (extension is msh)

 Mesh surface data file (extension is fgr)

 File with boundary conditions (extension is cnd)

 Material properties data file (extension is dat)

Output:

 Entire-type FEA model file (extension is adv)

The following argument should be specified with makefem_thermal in the command

line.

% makefem_thermal mshFile fgrFile cndFile matFile advFile [options]

 mshFile : the name of the mesh data file

 fgrFile : the name of the mesh surface data file

 cndFile : the name of the boundary conditions data file

 matFile: the name of the material properties data file

 advFile: the name of entire-type FEA model file

 File format of boundary conditions data file(cndFile)

 tempOnFaceGroup is the temperature of face group

 fluxOnFaceGroup is the flux on face group

The makefem_thermal tool in the present version of ADVENTURE Thermal supports

the convection and radiation boundary conditions.

cnd file for convection boundary conditions

Examples of material properties data are given below.

gravity 0 0 0 Dummy for thermal problem

boundary 2 Number of boundary conditions

tempOnFaceGroup 0 1 10 Temperature in the surface group 0 is 10[oC]

fluxOnFaceGroup 5 1 100 Flux on the surface group 5 is 100[W/m2]

gravity 0 0 0 Dummy for thermal problem

boundary 2 Number of boundary conditions

transOnFaceGroup 0 10.0 100.0 Surface 0 has ambient temperature10[oC]

 and heat transfer co-effiecient 100 (W/m2.0C)

 ADVENTURE SYSTEM

 38

Option:

-with-surface This option will save the information of

surface in the advFile.

-elm-src-file file name This option will read internal heat

generation of all elements from the text

file

Heat source file will be like below

#HeatSourceInfo

SourceN 34

6.95e+04

--

--

--

C.2 pfemsolv

The pfemsolv is used to solve the interior unknowns of subdomains. The external

surface and interface coniditions are considered as boundary conditions for each

subdomain. This tool reads the mesh data from model directory and boundary

conditions from result_surface directory.

Command:

% mpirun [options for mpirun] pfemsolv data_dir

Input files:

HDDM-type analysis model file:

 data_dir/model/advhddm_in_P.adv

Boundary Conditions

 data_dir/result_surface/advhddm_out_P.adv

Analysis results (steady analysis):

 data_dir/result/advhddm_out_P.adv

 ADVENTURE SYSTEM

 39

D. libsparse

LIBSPARSE-0.2b

libsparse is a C library which carries out a number of operations on sparse matrices,

particularly matrix vector multiplication using various sparse formats. It can convert

from skyline format to other sparse formats and vice versa. Currently it only supports

the symmetric matrices used in some modules of ADVENTURE Systems.

Include “advlas.h” where functions of libsparse is to be used.

Features of libsparse

1. This library can convert skyline matrix to other compressed storage formats and

vice versa.

2. It can multiply sparse matrix with a vector (y += Ax).

3. It is based on ADVENTURE system and depends on some of files in source file

of some of ADVENTURE modules. So before use of this library it should be

properly linked with source file of ADVENTURE solve modules.

4. It supports only Symmetric matrices used in ADVENTURE_Thermal and

ADVENTURE_Solid.

5. It can create different sparse matrix indexes using the nodal connectivity

information.

Matrix formats [10] that are recognized include:

CSR: Compressed Sparse Row

CSC: Compressed Sparse Column

COO: Coordinate format

DCOO: Diagonal Coordinate format

MSR: Modified Compressed Sparse Row

SKY: Skyline format

ICSR: Incremental Compressed Sparse Row

VBCSR: Variable Block Compressed Sparse Row

DBCSR: Diagonal Block Compressed Sparse Row (for ADVENTURE_Solid)

Main Functions:

The following table shows the description of functions used in the LIBSPARSE library.

NewDMatrix() It defines the indexes of sparse formats.

advlas_mkindex() It reads subdomain mesh data and prepares

the indexes of sparse formats. Different

functions are used for different sparse

formats.

 ADVENTURE SYSTEM

 40

advlas_cpmat_sky2nz() It converts the skyline format to other sparse

formats. Different functions are used for

different sparse formats.

advlas_ldl_decomposite() It decomposes the skyline matrix in ldl

format

advlas_matmult_vec_add() It multiplies a matrix with a vector and stores

the value in another vector.

advlas_ldl_solve() It solves the linear system using forward and

backward substitutions.

Descriptions of Functions:

function to make Dmatrix

NewDMatrix(matdim, node_dim, matrix type)

output: return dmat

function to make matrix index

advlas_mkindex(nnd, nel, nd_elm, nop, node_dim, dmat)

Output: dmat

function to copy skyline matrix to non-zero only matrix

advlas_cpmat_sky2nz(skymat, nzmat, precon_sw)

Output: nzmat

function to multiply matrix with a vector

advlas_matmult_vec_add (dmat, temp, reac)

Output: reac

function to decompose skyline matrix as ldl format

advlas_ldl_decomposite (dmat, work)

Output: dmat (decomposed form)

function to solve ldl skyline matrix

advlas_ldl_solve(dmat, solution)

Output: solution

function to delete Dmatrix

DeleteDMatrix(&dmat)

Parameters:

int nnd - number of nodes

int nel – number of elements

 ADVENTURE SYSTEM

 41

int nd_elm – number of nodes per element

int nop- node connectivity in elements

int node_dim – unknown per nodes (1 for thermal and 3 for solid)

int precon_sw – preconditioning switch

int *temp – input vector

int *reac – output vector

structure DMatrix dmat - structure of matrix index and value

structure DMatrix skymat - structure of skyline matrix index and value

structure DMatrix dmat - structure of non-zero only matrix index and value

Command line options:

 -keep-kmat-csr

This option specifies that the subdomain matrix

will be stored as CSR format. This is default

option.

 -keep-kmat-coo

This option specifies that the subdomain matrix

will be stored as COO format.

 -keep-kmat-msr

This option specifies that the subdomain matrix

will be stored as MSR format.

 -keep-kmat-csc

This option specifies that the subdomain matrix

will be stored as CSC format.

 -keep-kmat-icsr

This option specifies that the subdomain matrix

will be stored as ICSR format.

 -keep-kmat-vbcsr

This option specifies that the subdomain matrix

will be stored as VBCSR format.

 -keep-kmat-dcoo

This option specifies that the subdomain matrix

will be stored as DCOO format.

 -keep-kmat-dbcsr This option specifies that the subdomain matrix

will be stored as DBCSR format. This option is

only for ADVENTURE_Solid.

 -keep-kmat-sky This option specifies that the subdomain matrix

will be stored as skyline format.

 ADVENTURE SYSTEM

 42

Sparse Matrix Storage Schemes
In order to take the advantage of the large number of zero elements, special formats are

required to store sparse matrices. In this module, for symmetry sparse matrix, only

triangular part of the matrix is stored. The main goal is to represent only the non-zero

elements (nnz) considering the memory requirements and computation time. Several

sparse matrices storage formats are discussed below.

Compressed Sparse Row (CSR)
Compressed sparse row format is popular and the most general purpose storage format

for the sparse matrix. The elements are stored using three arrays: data, row_ptr and

col_ind.

A =

0.110.100.00.90.0

0.10

0.0

0.9

0.0

0.80.00.70.6

0.00.50.40.0

0.70.40.30.2

0.60.00.20.1

data: The float array data of length nnz stores the element of A row by row.

col_ind: The integer vector col_ind of length nnz contains the column indices which

correspond to the non-zero elements in the vector data.

row_ptr: The integer vector row_ptr of length nrow contains the pointers to the

beginning of each row in the array data and col_ind.

With the row_ptr array we can easily compute the number of non-zero elements in the

ith row as row_ptr[i+1] - row_ptr[i].

The CSR representation of an example symmetric matrix A:

row_ptr 1 2 4 6 9 11

data 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

col_ind 1 1 2 2 3 1 2 4 2 4 5

 ADVENTURE SYSTEM

 43

Coordinate Storage (COO)

The simplest sparse matrix storage structure is COO. It uses three arrays of length nnz

to store the sparse matrix: data, row_ind and col_ind.

data: The float array data stores the non-zero elements of the sparse matrix row by row.

row_ind: The row_ind stores the row indices of the corresponding element.

col_ind: The col_ind stores the column indices of the corresponding element.

The COO storage format of the example matrix A is shown below.

If the diagonal elements are stored first then the storage format is called Diagonal

Coordinate Storage (DCOO).

Compressed Sparse Column (CSC)

In this sparse matrix storing format the elements are stored using three arrays: data,

col_ptr and row_ind.
data: The float array data of length nnz contains the non-zero elements of A column by

column.

row_ind: The integer array row_ind of length nnz contains the row indices which

correspond to the non-zero elements in the array data.

col_ptr: The integer array col_ptr of length nrow contains the pointers to the beginning

of each column in the array data and row_ind. With the col_ptr array we can easily

compute the number of non-zero elements in the ith column as col_ptr[i+1] -

col_ptr[i].

row_ind 1 2 2 3 3 4 4 4 5 5 5

col_ind

1 1 2 2 3 1 2 4 2 4 5

data 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

col_ptr 1 4 8 9 11 11

data 1.0 2.0 6.0 3.0 4.0 7.0 9.0 5.0 8.0 10.0 11.0

row_ind 1 2 4 2 3 4 5 3 4 5 5

 ADVENTURE SYSTEM

 44

Modified Sparse Row (MSR)

The modified sparse row format has only two parallel arrays of equal length (nnz +1): A

float array data and an integer array col_ind.

data: The first n position in data contains the diagonal elements of the matrix in order.

The position n+1 of the array data is not used, or may sometimes be used to carry other

information concerning the matrix. Starting at position n+1, the non-zero elements of

data excluding the diagonal elements, are stored by row.

col_ind: The n+1 first position of col_ind contains the pointer to the beginning of each

row in data. The rest position of col_ind represents its column indices which

corresponds to the non-zero elements (off-diagonal) in the array data.

 Thus for matrix A, the two arrays are shown in below.

The restriction of MSR method is that principal diagonal element of coefficient matrix

must be non-zero.

Variable Block Sparse Row (VBR)

The idea of this format is to exploit the non-zeros in contiguous locations by packing

them. Unlike fixed-size blocking, the blocks will have variable lengths. As in fixed size

blocking, if we know the column index of the first non-zero in a block, then we will also

know the column indices of all its other non-zeros.This storage format requires an array

nz_ptr (of length the number of blocks) in addition to the other three arrays used in

CSR: data, col_ind and row_ptr.

data: The float array data stores the non-zero elements of A row by row.

col_ind: The integer array col_ind (of length the number of blocks) stores the column

number of the first non-zero for each block.

row_ptr: The integer array row_ptr (of length the number of rows) to point to the

position where the blocks of each row starts. The last element of the row_ptr is the

number of blocks. nz_ptr: The integer array nz_ptr stores the location of the first

non-zero of each block in the array data. An example of VBR is

data 1.0 3.0 5.0 8.0 11.0 2.0 4.0 6.0 7.0 9.0 10.0

col_ind 1 2 4 6 9 11 1 2 1 2 2 4

nz_ptr 1 2 4 6 8 9 10

data 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

col_ind 1 1 2 1 4 2 4

row_ptr 1 2 3 4 6 7

 ADVENTURE SYSTEM

 45

Incremental Compressed Sparse Row (ICSR)

The incremental compressed sparse row is a variant of MSR. Instead of 1D index itself,

the difference with the 1D index of the previous nonzero is stored, as an increment. This

storage format has two arrays with the following function:

data: The float array data of length nnz +1, stores non-zero elements of matrix A.

incr: The integer array incr of length nnz + 1 stores the increment with the previous

non-zero.

ICSR representation of matrix A is shown as:

Skyline or Variable Band (SKY)

The Skyline representation becomes popular for direct solvers especially when pivoting

is not necessary. The matrix elements are stored using three arrays: data, row_ptrn,

col_ind.
data: The float array data stores the element of matrix A row by row.

col_ind: It contains column number of first element of each row.

row_ptr: This array points to the start of every row.

This storage format stores some zero elements while other methods explained above

does not.

data 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

incr 0 1 1 2 1 1 1 2 2 2 1

row_ptr 1 2 4 6 9

data 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0.0 8.0 9.0 0.0 10.0 11.0

col_ind 1 1 2 1 2

 ADVENTURE SYSTEM

 46

Diagonal Block Compressed Sparse Row (DBCSR)
The idea of this format is to exploit fixed block shape of a matrix. Structural problem

has such type of matrix. Supporting block shape is 3x3. In this format, if we know the

column index of the first non-zero in a block, then we will also know the column

indices of all its other non-zeros.

diag: This float array diag stores the nonzero of diagonal block (row wise).

data: The float array data stores the 3x3 block (block and row wise).

index_brow: This integer array points to the first element of first block of a row to the

data array.

index_bcol: This integer array stores the column number of first element of each 3x3

block. The length is number of blocks.

1
 2 3

4 5 6

7 8 9 10

11 12 13 14 15

16 17 18 19 20 21

22 23 24 25

26 27 28 29 30

31 32 33 34 35 36

37 38 39

40

41 42 43

44 45

46 47 48

49 50 51

diag 1 2 3 4 5 6 10 14 15 19 20 21 25 29 30 34 35 36 40

44 45 49 50 51

data 7 8 9 11 12 13 16 17 18 22 23 24 26 27 28 31 32 33

37 38 39 41 42 43 46 47 48

index_brow 0 0 9 18 27

index_bcol 0 3 0

 ADVENTURE SYSTEM

 47

E. Numerical Examples

Here simple examples of applications of the ADVENTURE_Thermal are described.

In the interest of simplicity, the examples are limited to heat transfer problems on some

test models and use of quadrilateral tetrahedral elements. These models are located in

the directory sample_data/manual_example.

E.1 Numerical examples with temperature boundary conditions

Problem statement

Find the temperature distribution along the wall of a furnace shown in Fig. 12 The

external width is W = 2 m, while the wall thickness is L = 0.5 m. The furnace is made of

refractory brick with thermal conductivity k = 40 W/(m·0K). The inner and the outer

surfaces are kept at uniform constant temperatures ti = 600 0C and to = 60 0C,

respectively.

Analysis flow

1. Create geometry file and node density file

 temp.gm3d

 temp.gm3d

2. Create patch file using ADVENTURE_CAD

 % advcad temp.gm3d temp.pch 0.1

3. Automatic mesh generation using ADVENTURE_Tetmesh

 3a. Surface patch corrction

 % advtmesh9p temp

 3b. Linear tetrahedral mesh generation

 % advtmesh9m tempc

 3c. Linear tetrahedral to quadratic tetrahedral

 % advtmesh9s tempc

4. Extraction of mesh surface using ADVENTURE_BCtool-2.0

 % msh2pch tempcs.msh 3

Box 0 0 0 2 2 2

Box 0.5 0.5 2 1 1 2

subtract

 ADVENTURE SYSTEM

 48

5. Boundary conditions setup using ADVENTURE_BCtool-2.0

 % ADVENTURE_BcGUI_Ver_2_0 tempcs_3.pch tempcs_3.pcg

Figure 12. Example of temperature boundary condition set up

Output of ADVENTURE_BcGUI_2_0

 temp.cnd

gravity 0.0 0.0 0.0

boundary 8

tempOnFaceGroup 0 0 0 60.0

tempOnFaceGroup 1 0 0 60.0

tempOnFaceGroup 4 0 0 60.0

tempOnFaceGroup 5 0 0 600.0

tempOnFaceGroup 6 0 0 600.0

tempOnFaceGroup 7 0 0 600.0

tempOnFaceGroup 8 0 0 600.0

tempOnFaceGroup 9 0 0 60.0

6. Create material data file

s_mat.dat

HeatConductivity 40

7. Create entire FEA model using ADVENTURE_BCtool-2.0

% makefem3 tempcs.msh tempcs_3.fgr temp.cnd s_mat.dat temp.adv

 (Output file will be temp.adv)

8. Create HDDM type model data file using ADVENTURE_Metis

 ADVENTURE SYSTEM

 49

% mpirun –np 4 adventure_metis –difn 1 temp.adv temp 700

(HDDM file will be saved in a directory “temp”)

9. Analyze heat conduction model using ADVENTURE_Thermal

% mpirun –np 4 advthermal-p temp

(A directory named “result” will be created in the directory of “temp”)

10. Create temperature data file

% hddmmrg Temperature temp

(Output of this command is Temperature.dat)

11. Visualize temperature distribution using ADVENTURE_Auto (It reads the

Temperature.dat file)

% advauto_thermalview tempcs.msh tempcs_3.fgr

Figure 13. Temperature distribution using ADVENTURE_Auto

 ADVENTURE SYSTEM

 50

E.2 Numerical examples with flux boundary conditions

Problems Statement

Consider the conduction heat transfer in a cross section of a cylinder shown in Figure

14, thermal conductivity k = 50 [W/mm·K], inner radius in 125 mm and outer radius

250 mm. The outer surface is maintained at a temperature of T1 = 10 [oC] and heat flows

through the inner surface at a rate of 100 [W/mm2]. The rest of the surfaces are

maintained with natural boundary conditions. We wish to determine the steady

temperature distribution through the model using ADVENTURE_Thermal.

 Figure 14. Analysis Model (Cross section of a cylinder)

Analysis flow

1. Create geometry file and node density file

 flux.igs

 flux.ptn

2. Create patch file using ADVENTURE_TriPatch

 % ADVENTURE_TriPatch flux flux

3. Automatic mesh generation using ADVENTURE_Tetmesh

 3a. Surface patch corrction

 % advtmesh9p flux

 3b. Linear tetrahedral mesh generation

 % advtmesh9m fluxc

BaseDistance

4.0

 ADVENTURE SYSTEM

 51

 3c. Linear tetrahedral to quadratic tetrahedral

 % advtmesh9s fluxc

4. Extraction of mesh surface using ADVENTURE_BCtool-2.0

 % msh2pch fluxcs.msh 3

5. Boundary conditions setup using ADVENTURE_BCtool-2.0

 % ADVENTURE_BcGUI_Ver_2_0 fluxcs_3.pch fluxcs_3.pcg

Output of ADVENTURE_BcGUI_2_0

 flux.cnd

gravity 0.0 0.0 0.0

boundary 2

tempOnFaceGroup 1 0 0 10

fluxOnFaceGroup 4 0 0 100

6. Create material data file

s_mat.dat

HeatConductivity 40

7. Create entire FEA model using ADVENTURE_BCtool-2.0

% makefem3 fluxcs.msh fluxcs_3.fgr flux.cnd s_mat.dat flux.adv

 (Output file will be flux.adv)

8. Create HDDM type model data file using ADVENTURE_Metis

% mpirun –np 2 adventure_metis –difn 1 flux.adv flux 700

(HDDM file will be saved in a directory “flux”)

9. Analyze heat conduction model using ADVENTURE_Thermal

% mpirun –np 2 advthermal-p flux

(A directory named “result” will be created in the directory of “flux”)

10. Create temperature data file

% hddmmrg Temperature flux

(Output of this command is Temperature.dat)

11. Visualize temperature distribution using ADVENTURE_Auto (It reads the

Temperature.dat file)

% advauto_thermalview fluxcs.msh fluxcs_3.fgr

 ADVENTURE SYSTEM

 52

 Figure 15. Temperature distribution using ADVENTURE_Auto

 ADVENTURE SYSTEM

 53

E.3 Numerical examples with convection boundary conditions

Problem statement

Consider the conduction heat transfer in a cross section of a hollow cylinder with heat

conductivity, 8.64x10-2 W/(mm·K). The convection coefficient and temperature of the

surrounding medium in the inner surface are 2.8372x10-3 W/(mm2 ·K) and 38 0C . The

convection coefficient and temperature of the surrounding medium in the outer surface

are 1.4186x10-3 W/(mm2 ·K) and -18 0C. We wish to determine the steady temperature

distribution through the model using ADVENTURE_Thermal.

Analysis flow

1. Create geometry file and node density file

 conv.igs

 conv.ptn

2. Create patch file (use without file extension)

 % ADVENTURE_TriPatch conv conv

3. Automatic mesh generation using ADVENTURE_Tetmesh

 3a. Surface patch correction

 % advtmesh9p conv

 3b. Linear tetrahedral mesh generation

 % advtmesh9m convc

 3c. Linear tetrahedral to quadratic tetrahedral

 % advtmesh9s convc

4. Extraction of mesh surface using ADVENTURE_BCtool-2.0

 % msh2pch convcs.msh 3

5. Boundary conditions setup using ADVENTURE_BCtool-2.0

 % ADVENTURE_BcGUI_Ver_2_0 convcs_4.pch convcs_3.pcg

BaseDistance

4.0

 ADVENTURE SYSTEM

 54

Figure 16. Example of convection boundary condition set up

Output of ADVENTURE_BcGUI_2_0

 conv.cnd

gravity 0.0 0.0 0.0

boundary 2

transOnFaceGroup 1 -18 .0014186

transOnFaceGroup 4 38 .0028372

6. Create material data file

s_mat.dat

HeatConductivity 0.086475

7. Create entire FEA model using ADVENTURE_BCtool-2.0

% makefem3 convcs.msh convcs_3.fgr conv.cnd s_mat.dat conv.adv

8. Create HDDM type model data file using ADVENTURE_Metis

% mpirun –np 2 adventure_metis –difn 1 conv.adv conv 71

9. Analyze heat conduction model using ADVENTURE_Thermal

% mpirun –np 2 advthermal-p conv

(A directory named “result” will be created in the directory of conv)

10. Create temperature data file

% hddmmrg Temperature conv

(Output of this command is Temperature.dat)

11. Temperature distribution using ADVENTURE_Auto

% advauto_thermalview convcs.msh convcs_3.fgr

 ADVENTURE SYSTEM

 55

Figure 17. Temperature distribution using ADVENTURE_Auto

 ADVENTURE SYSTEM

 56

E.4 Numerical examples with internal heat generation

Problem statement

Consider the conduction heat transfer in a solid cylinder bar of radius 0.1m and thermal

conductivity, 40 W/(m·0K) that is heated by the passage of an electric current, which

generates heat energy 4x106 (W/m3). Heat is dissipated from the surface of the bar by

convection into the surrounding medium at an ambient temperature of 200C. The heat

transfer coefficient of the medium is 400 W/(m2 ·0K). We wish to determine the steady

temperature distribution through the model using ADVENTURE_Thermal.

Analysis flow

1. Create geometry file using ADVENTURE_CAD

 igen.gm3d

 igen.gm3d

2. Create patch file using ADVENTURE_CAD

 % advcad igen.gm3d igen.pch 0.01

3. Automatic mesh generation using ADVENTURE_Tetmesh

 3a. Surface patch correction

 % advtmesh9p igen

 3b. Linear tetrahedral mesh generation

 % advtmesh9m igenc

 3c. Linear tetrahedral to quadratic tetrahedral

 % advtmesh9s igenc

4. Extraction of mesh surface using ADVENTURE_BCtool-2.0

 % msh2pch igencs.msh 3

5. Boundary conditions setup using ADVENTURE_BCtool-2.0

 % ADVENTURE_BcGUI_Ver_2_0 igencs_3.pch igencs_3.pcg

circle 0 0 0 0.1 0 0 0 0 1 16

extrude 0 0 0.5

 ADVENTURE SYSTEM

 57

Figure 18. Example of convection boundary condition set up

Output of ADVENTURE_BcGUI_2_0

 igen.cnd

gravity 0.0 0.0 0.0

boundary 1

transOnFaceGroup 0 20 400

6. Create material data file

s_mat.dat

HeatConductivity 40

InternalHeatGeneration 4.0E6

7. Create entire FEA model using ADVENTURE_BCtool-2.0

% makefem3 igencs.msh igencs_3.fgr igen.cnd s_mat.dat igen.adv

8. Create HDDM type model data file using ADVENTURE_Metis

% mpirun –np 2 adventure_metis –difn 1 igen.adv igen 400

9. Analyze heat conduction model using ADVENTURE_Thermal

% mpirun –np 2 advthermal-p igen

(A directory named “result” will be created in the directory of conv)

10. Create temperature data file

% hddmmrg Temperature igen

(Output of this command is Temperature.dat)

11. Temperature distribution using ADVENTURE_Auto

% advauto_thermalview igencs.msh igencs_3.fgr

 ADVENTURE SYSTEM

 58

Figure 19. Temperature distribution using ADVENTURE_Auto

 ADVENTURE SYSTEM

 59

E.5 Numerical examples with multi material model

Calculate the stationary temperature distribution in a nuclear fuel element, whose shape

can be approximated by a long circular cylinder of radius R = 15 mm. The element is

covered with a protective steel layer of thickness L = 3 mm. Thermal conductivities of

the nuclear fuel and of steel are kf = 30 W/(m·oK) and ks = 36 W/(m·oK),

respectively. The rate of internal heat generation per unit volume of nuclear fuel is f =

4x106 W/m3, while the convection coefficient and the temperature of the surrounding

medium are hc = 100 W / (m2·oK) and tc = 300 oC.

Analysis flow

1. Create geometry file (using Meshman) and node density file

Cylinder

 cylinder.igs

 cylinder.ptn

Tube

tube.igs

 tube.ptn

2. Create patch file (use without file extension) using ADVENTURE_TriPatch

 2a. Create patch file seperately

 % ADVENTURE_TriPatch cylinder cylinder

 % ADVENTURE_TriPatch tube tube

 2b. Merge `cylinder` and `tube` to `multi`

 % mrpach cylinder.pcm cylinder.pcg tube.pcm tube.pcg -o multi.pcm –g

multi.pcg

3. Automatic mesh generation using ADVENTURE_Tetmesh

 3a. Surface patch correction

 % advtmesh9p multi

 3b. Linear tetrahedral mesh generation

 % advtmesh9m multi

BaseDistance

3.0

BaseDistance

3.0

 ADVENTURE SYSTEM

 60

 3c. Linear tetrahedral to quadratic tetrahedral

 % advtmesh9s multi

4. Extraction of mesh surface using ADVENTURE_BCtool-2.0

 % msh2pch multics.msh 4

5. Boundary conditions setup using ADVENTURE_BCtool-2.0

5a. Displaying multi material model

% msh2pcm multics.msh

% ADVENTURE_BcGUI_Ver_2_0 multics_V.pcm multics_V.pcg

 Figure 20. Volume 1 Volume 0

5b. Boundary condition setup

% ADVENTURE_BcGUI_Ver_2_0 multics_4.pch multics_4.pcg

Figure 21. Example of convection boundary condition set up at the outer surface

 ADVENTURE SYSTEM

 61

Output of ADVENTURE_BcGUI_2_0

 multi.cnd

gravity 0.0 0.0 0.0

boundary 1

transOnFaceGroup 0 300 100e-6

6. Create material data file

m_material.dat

#materialInfo

materialN 2

propertyN 2

HeatConductivity 36.0e-3

InternalHeatGeneration 0.0

HeatConductivity 30.0e-3

InternalHeatGeneration 4.0e-3

#volumeInfo

volumeN 2

0

1

7. Create entire FEA model using ADVENTURE_BCtool-2.0

% makefem3 multics.msh multics_4.fgr multi.cnd m_material.dat multi.adv

8. Create HDDM type model data file using ADVENTURE_Metis

% mpirun –np 2 adventure_metis –difn 1 multi.adv multi 40

9. Analyze heat conduction model using ADVENTURE_Thermal

% mpirun –np 2 advthermal-p multi

(A directory named “result” will be created in the directory of multi)

10. Create temperature data file

 % hddmmrg Temperature multi

 (Output of this command is Temperature.dat)

11. Temperature distribution using ADVENTURE_Auto

 % advauto_thermalview multics.msh multics_4.fgr

 ADVENTURE SYSTEM

 62

Figure 22. Temperature distribution using ADVENTURE_Auto

 ADVENTURE SYSTEM

 63

E.6 Numerical examples of with surface information

Calculate the steady temperature distribution of the part of a cooling stave shown in

Figure-23. Consider the following conditions.

Air temperature is 50oC, water temperature is 30oC, hot gases temperature 1600oC.

Heat convection coefficients: between furnace shell and atmosphere – 12 W/(m2 K)

between water and inneside of the cooling stave- 8000 W/(m2 K)

between hot gases and furnace shell -260 W/(m2 K)

Heat conductivity: Furnace shell and steve body- 52.2 W/(m K)

 Filling material - 0.35 W/(m K)

 Invalid bricks and lining material- 21 W/(m K)

Formation of slag is not considered.

Figure 23 Part of cooling stave

Analysis Flow:

Following the steps 1-3 of the previous example for multi volume model we have the

final mesh file partstavecs.msh.

1. Extraction of mesh surface using ADVENTURE_BCtool-2.0

 % msh2pch multics.msh 3

2. Boundary condition setup

 % ADVENTURE_BcGUI_Ver_2_0 partstavecs_3.pch partstavecs_3.pcg

Output of ADVENTURE_BcGUI_2_0

 thermal.cnd

gravity 0.0 0.0 0.0

boundary 3

transOnFaceGroup 4 30.0 0.0080

transOnFaceGroup 6 1600 2.6E-4

transOnFaceGroup 7 50.0 0.12E-4

 ADVENTURE SYSTEM

 64

3. Create material data file

m_material.dat

materialN 3

propertyN 1

HeatConductivity 52.2e-3

HeatConductivity 0.35e-3

HeatConductivity 21e-3

volumeN 7

0

2

2

2

2

1

0

4. Create entire FEA model using makfem_thermal

% makefem_thermal partstavecs.msh partstavecs_4.fgr thermal.cnd m_material.dat

partstave.adv –with-surface

5. Create HDDM type model data file using ADVENTURE_Metis

% mpirun –np 4 adventure_metis –difn 1 partstave.adv partstave 200

6. Analyze heat conduction model using ADVENTURE_Thermal

% mpirun –np 4 advthermal-p -result-surface-interface partstave

 (A directory named “result_surface” will be created in the directory of partstave)

7. Calculate interior temperature

 % mpirun –np 4 pfemsolv partstave

(A directory named “result” will be created in the directory of partstave)

8. Create temperature data file

 % hddmmrg Temperature partstave

 (Output of this command is Temperature.dat)

9. Temperature distribution using ADVENTURE_Auto

 % advauto_thermalview partstavecs.msh partstavecs_4.fgr

Figure 24 Temperature distribution using Advauto_thermalview

 ADVENTURE SYSTEM

 65

E.7 Numerical examples of large scale analysis

A large scale HTTR (High Temperature Test Reactor) model (Figure 25) with about 2

millions degrees of freedom (dof) is analyzed by ADVENTURE_Thermal module. As

the boundary conditions for this model, some high temperature is set on the lower plan

and some low temperature is set on the upper plan. Figure 26. shows the temperature

distribution after solution by ADVENTURE_Thermal.

Figure 25. Domain Decomposition of HTTR Model

Figure 26. Temperature Distribution Visualized by ADVENTURE_Visual (Old)

 ADVENTURE SYSTEM

 66

References

[1]. ADVENTURE Project: http://adventure.sys.t.u-tokyo.ac.jp

[2]. G.Yagawa and R.Shioya: Parallel Finite Elements on a Massively Parallel

Computer with Domain Decomposition, Computing Systems in Engineering, 4,

Nos. 4-6 (1993), pp. 495-503.

[3]. G.Yagawa and R.Shioya: Massively Parallel Finite Element Analysis,

Asakura-Shoten, (1998) (in Japanese).

[4]. T.Miyamura, H.Noguchi, R.Shioya, S.Yoshimaura and G.Yagawa: Massively

Parallel Elastic-Plastic Finite Element Analysis Using the Hierarchical Domain

Decomposition Method, Transactions of Japan Society of Mechanical

Engineers (JSME), 65-A, No.634(1999), pp. 1201-1208 (in Japanese).

[5]. R.Shioya, H.Kanayama, D.Tagami and E.Imamura: A Domain Decomposition

Approach for Non-steady Heat Conductive Analysis, Advances in

Computational Engineering & Science, 189.pdf, pp. 1-6, 2001.

[6]. MPI: http://www-unix.mcs.anl.gov/mpi/

[7]. MPICH: http://www-unix.mcs.anl.gov/mpi/mpich/

[8] Jan Mandel: Balancing Domain Decomposition, Communications on Numerical

Methods in Engineering, 9(1993), 233-241

[9] R.Shioya, H. Kanayama, A.M.M.Mukaddes and M. Ogino:

 Heat Conductive Analysis with Balancing Domain Decomposition Method,

 Journal of Theoretical and Applied Mechanics, 52(2003), 43-53.

[10] Abul Mukid Mohammad Mukaddes, Masao Ogino and Ryuji Shioya,

 Performance Evaluation of Domain Decompositon Method with Sparse Matrix

 Storage Schemes in Moder Supercomputer, International Journal of

 Computational Methods, Volume 11, Issue Supp 01, Nov. 2014

 DOI: 10.1142/S0219876213440076.

[11] A M M Mukaddes, M. Ogino, H. Kanayama, and R. Shioya, A Scalable

 Balancing Domain Decomposition Based Preconditioner for Large Scale Heat

 Transfer Problems, JSME International Journal, B-Fluid T. 49-2(2006), 533-540.

http://adventure.sys.t.u-tokyo.ac.jp/
http://www-unix.mcs.anl.gov/mpi/mpich/

	Preface to the new version
	1. Introduction
	1.1. Program Features
	1.2. Operational Environments
	1.3. Program Compilation and Installation
	1.3.1 File Extraction from Archive
	1.3.2. Substructures of Directories
	1.3.3. Compilation Method
	1.3.4 Installation of Executable Module

	1.4. Program Execution

	2. Parallel Processing and Analysis Solver
	2.1. Parallel Processing
	2.2. Characteristics of solver
	2.3 Sparse Matrix Storage Schemes
	2.4 ADVENTURE_Metis

	3. Analysis Algorithm
	3.1. Transient Analysis
	3.2. Input / Output Data
	3.3. Standard of Temperature Units
	3.4. Boundary Conditions
	3.5. Material Properties
	3.6. Output Results

	4. Program Compilation and Installation
	4.1. Compile
	4.2. Installation of Executable Module

	5. Program Execution
	5.1. Names of Input / Output Files
	5.2. Command Options
	5.2.1. Options for Transient Analysis
	5.2.2. Options Related to Elements
	5.2.3. Options for Iteration Control
	5.2.4. Options for Sparse Matrix Storage Formats
	5.2.5. Options for different solvers
	5.2.6. Options for Output Filename Specification
	5.2.7. Other Options

	Appendix
	A. Supported Elements
	A.1. Linear Tetrahedral Element
	A.2. Quadratic Tetrahedral Element
	A.3. Linear Triangular Element
	A.4. Quadratic Triangular Element

	B. Setup of Boundary Conditions
	B.1. Boundary Conditions for Temperature
	B.2. Boundary Conditions for Heat Flux
	B.3. Boundary Conditions for Heat Convection
	B.4. Boundary Conditions for Heat Radiation
	B.5 Example of Material Properties Data:

	C. Tool Program
	C.1 makefem_thermal
	C.2 pfemsolv

	D. libsparse
	Sparse Matrix Storage Schemes
	E. Numerical Examples
	E.1 Numerical examples with temperature boundary conditions
	E.2 Numerical examples with flux boundary conditions
	E.3 Numerical examples with convection boundary conditions
	E.4 Numerical examples with internal heat generation
	E.5 Numerical examples with multi material model
	E.6 Numerical examples of with surface information
	E.7 Numerical examples of large scale analysis

	References

