# ADVENTURE\_BCtool

Attachment of boundary conditions and material properties to mesh

Version: 1.0

# **User's Manual**

March 1, 2002 ADVENTURE Project

# Contents

| Out  | line                                                                                                                                                                     | 3       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Pro  | gram Features                                                                                                                                                            | 3       |
| Sys  | tem Requirements                                                                                                                                                         | 4       |
| Inst | allation Method                                                                                                                                                          | 5       |
| Usi  | ng the Program                                                                                                                                                           | 5       |
| 5.1. | Step 1. Extraction of Mesh Surface                                                                                                                                       | 6       |
| 5.2. | Step 2. Setting of Boundary Conditions                                                                                                                                   | 7       |
| 5.3. | Step 3. Creation of Entire-type FEA Model File                                                                                                                           | 26      |
| 5.4. | Flowchart of Data Processing                                                                                                                                             | 30      |
| File | Formats                                                                                                                                                                  | 31      |
| 6.1. | Mesh Data File (extension .msh)                                                                                                                                          | 31      |
| 6.2. | Mesh Surface Data File (extension .fgr)                                                                                                                                  | 33      |
| 6.3. | Extracted Surface Mesh Data File (extension .pch)                                                                                                                        | 36      |
| 6.4. | Patch Group Data File (extension .pcg)                                                                                                                                   | 37      |
| 6.5. | Global Index File (extension .trn)                                                                                                                                       | 38      |
| 6.6. | Boundary Condition File (extension .cnd)                                                                                                                                 | 39      |
| 6.7. | Material Properties Data File (extension .dat)                                                                                                                           | 40      |
| 6.8. | Nodal Temperature Data File (extension .tmp)                                                                                                                             | 41      |
| 6.9. | Entire-type FEA Model File (extension .adv)                                                                                                                              | 42      |
| Cor  | nversion of Surface Load to Nodal Load                                                                                                                                   | 48      |
| 7.1. | Linear Tetrahedral Element                                                                                                                                               | 48      |
| 7.2. | Quadratic Tetrahedral Element                                                                                                                                            | 49      |
| 7.3. | Linear Hexahedral Element                                                                                                                                                | 50      |
| 7.4. | Quadratic Hexahedral Element                                                                                                                                             | 51      |
|      | Out<br>Pro<br>Sys<br>Inst<br>5.1.<br>5.2.<br>5.3.<br>5.4.<br>6.1.<br>6.2.<br>6.3.<br>6.4.<br>6.5.<br>6.6.<br>6.7.<br>6.8.<br>6.9.<br>Cor<br>7.1.<br>7.2.<br>7.3.<br>7.4. | Outline |

# 1. Outline

The module ADVENTURE\_BCtool is an interactive pre-processing program used to attach boundary conditions and material properties data to the mesh and to create finite element models for ADVENTURE system.

This manual is a reference guide to using ADVENTURE\_BCtool.

# 2. Program Features

Types of elements supported by ADVENTURE\_BCtool:

- Linear tetrahedral element
- Quadratic tetrahedral element
- Linear hexahedral element
- Quadratic hexahedral element

Types of analyses supported by ADVENTURE\_BCtool:

- Elastic analysis
- Elastic-plastic analysis
- Thermal stress analysis

Boundary conditions can be set to

- Surface of grouped mesh
- Primary nodes located on surface boundaries of grouped mesh

Possible boundary conditions are:

- Load (in X, Y, and Z directions, and in the direction of normal to the surface)
- Displacement (in X, Y, and Z directions, in the direction of normal to the surface)
- Acceleration of gravity

Material properties, which can be set:

- Young's modulus
- Poisson's ratio
- Hardening parameter
- Yield stress
- Density of material

# 3. System Requirements

OS: UNIX, Linux Compiler: GNU C++ (ver. 2.95.x, 2.96) Libraries: Motif (Ver. 1.2 or higher) or LessTif (Ver. 0.92.0 or higher) OpenGL (Ver. 1.1 or higher) or Mesa (Ver. 3.2 or higher) ADVENTURE\_IO (library of the ADVENTURE system)

| LessTif | (http://www.lesstif.org/) |
|---------|---------------------------|
| Mesa    | (http://www.mesa3d.org/)  |

# 4. Installation Method

To install the ADVENTURE\_BC tool module, refer to the file "Install" located right under a top directory after achieve extraction.

# 5. Using the Program

To attach boundary conditions and material properties data to the mesh and to create finite element model using ADVENTURE\_BCtool, you need to accomplish the following steps.

- Step 1. Extraction of mesh surface;
- Step 2. Attaching boundary conditions to mesh using the graphic user interface;
- Step 3. Creation of entire-type FEA model (including settings of boundary conditions and material properties).

# 5.1. Step 1. Extraction of Mesh Surface

At this step, the data of extracted mesh surface groups are converted into the GUI input format. The following input and output files are used.

Input:

Mesh data file (extension: .msh)

#### Output:

Mesh surface data file (extension: .fgr) Extracted surface mesh data file (extension: .pch) Patch group data file (extension: .pcg) Global index file (extension: .trn)

The shell script msh2pch is used for conversion. There are two arguments in msh2pch command line.

% msh2pch mshFile div\_n

mshFile is the name of mesh file, and

 $div_n$  is the dihedral angle which becomes a base for mesh surface grouping. The dihedral angle should be specified as a fraction (segment) of 180 degrees. The surface, which dihedral angle is more than specified, will be assigned to another group.

Example 1. The filename of mesh data is Model.msh and the dihedral angle is  $60^{\circ}$  ( $60^{\circ}=180^{\circ}/3$ ).

Example 2. The filename of mesh is Model.msh and the dihedral angle is  $45^{\circ}$  ( $45^{\circ}=180^{\circ}/4$ ).

% msh2pch Model.msh 4

An appropriate dihedral angle varies form model to model and should be adjusted by the user after checking of a condition whether the grouping is enough detailed or not by displaying the object with GUI. If the filename of mesh data is Model.msh and the dihedral angle is 180/N, the following output will be created:

| Model_N.fgr | ← Mesh surface data file           |
|-------------|------------------------------------|
| Model_N.pch | ← Extracted surface mesh data file |
| Model_N.pcg | ← Surface patch group data file    |
| Model N.trn | ← Global index file                |

<sup>%</sup> msh2pch Model.msh 3

# 5.2. Step 2. Setting of Boundary Conditions

The boundary conditions can be set to mesh using the executable module bcGUI. The following input and output files are used.

| Input files: | Extracted surface mesh data file (extension: .pch) |
|--------------|----------------------------------------------------|
|              | Surface patch group data file (extension: .pcg)    |
| Output file: | File with analysis conditions (extension: . cnd)   |

# Executing bcGUI

% bcGUI pchFile pcgFile [-icnd cndFile] [-ocnd outFile]

| pchFile | is the extracted surface mesh data file.                         |
|---------|------------------------------------------------------------------|
| pcgFile | is the surface patch group data file.                            |
| cndFile | is the file with analysis conditions which is read               |
|         | automatically at the moment of bcGUI startup.                    |
| outFile | is the file with analysis conditions which is created            |
|         | automatically at the end of bcGUI execution.                     |
| -icnd   | is the option used to set the file with conditions for analysis, |
|         | which will be read automatically at the start of bcGUI           |
|         | execution.                                                       |
| -ocnd   | is the option used to set the file, which will be written        |
|         | automatically at the end of bcGUI execution.                     |
| []      | the settings in parenthesis can be omitted.                      |
|         |                                                                  |

After startup of bcGUI, a default window will appear on the screen. The model will be plotted as it is shown in *Fig. 1* (example).



Fig. 1. Initial Window with Model

### Changing of Observer Viewpoint

The user is able to use the mouse for panning, zooming, and rotating of the displayed object (model). By default, the left mouse button controls panning, the right mouse button controls zooming, and the center mouse button controls rotating. The user can press the mouse buttons at any time to activate these features.

### <u>Panning</u>

To pan the model in the plane of the screen, press the left mouse button and move the mouse. The model will be translated in the moving direction.

### <u>Zooming</u>

To zoom the model about the center of the screen, press the right mouse button and move the mouse. Moving the mouse upward the screen causes the model to increase in size. Moving the mouse downward the screen causes the model to decrease in size.

### <u>Rotating</u>

To rotate the model, press the center mouse button and move the mouse. The model will rotate about its center along the axis, which is perpendicular to the motion of the mouse (cursor).

### Selection of Nodes and Surface Groups

The primary nodes of surface group boundaries are displayed on the screen by round dots. To select the primary node, press the Shift keyboard key with clicking on the node using the left mouse button. The selected node will be shown by vivid color. To deselect the node, press the Shift keyboard key with clicking on the background (place without node) using the left mouse button. If the node is selected, its number will be extracted from the extracted surface mesh data file (extension .pch) and displayed on the screen.



Fig. 2. Selected Node

To select the surface group, which contains the primary node, press the Shift keyboard key with clicking on the node using the left mouse button. Other adjacent surfaces can be selected one by one by pressing the right mouse button. If the surface is selected, its number will be extracted from the surface patch group data file (extension .pcg) and displayed on the screen.



Fig. 3. 1<sup>st</sup> Selected Surface



Fig. 4. 2<sup>nd</sup> Selected Surface



Fig. 5. 3<sup>rd</sup> Selected Surface

# Setup of Load and Displacement Boundary Conditions

To attach the boundary conditions to a node (or surface group):

- Select the node (or surface group) as it was described above.
- Select the menu Add Load or Add Displacement from the main menu BC (*Fig. 6*). The dialog shown in *Fig. 7* will appear on the screen.
- Set the boundary condition by pressing the toggle button against the necessary component (*Fig. 8*).
- The values of components (X, Y, and Z) can be set into the text boxes on the right.
- If the toggle buttons on the left are not pressed, the values set in text boxes on the right will be ignored.
- *Normal* represents the direction, which is perpendicular to the selected surface (triangle or quadrangle of mesh surface). The direction is assumed to be "positive" if the normal to the face is pointed into the object (body), and "Negative" if the normal to a face is pointed outside the object (body).
- The toggle button against *Normal* can be selected <u>only</u> when a face group is selected.
- The settings for "X component", "Y component", and "Z component" <u>cannot</u> be changed if the toggle button *Normal* is pressed.
- Zero value of load and zero value of displacement normal to the surface <u>cannot</u> be set.
- The load on the face group should be specified as a <u>load per unit area</u>.



Fig. 6. Menu for Boundary Conditions Setup



Fig. 7. Dialog for Displacement Boundary Conditions

| <mark>≯ b</mark> cGUI | I            | × |
|-----------------------|--------------|---|
|                       | Displacement |   |
| ÷                     | X            | ] |
| ÷                     | ¥ 0          | ] |
| \$                    | Z 0          | ] |
| ÷                     | Normal       | ] |
|                       | OK Cancel    |   |

Fig. 8. Displacement in Z Direction Is Fixed

# Setup of Gravity

To set up the gravity acceleration, select the option *Gravity Acceleration* in the menu *BC*, as it is shown in *Fig 9*. The dialog shown in *Fig. 10* will be displayed. X, Y, and Z in the dialog menu represent the "X component", "Y component", and "Z component" of gravity, respectively.



Fig. 9. Setup Menu for Gravity Acceleration

| 🗙 bcGUI     | ×          |
|-------------|------------|
| Gravity Acc | celeration |
| x           | 0          |
| Y           | 0          |
| Z           | 0          |
| OK          | Cancel     |

Fig. 10. Dialog Window for Gravity Acceleration Setup

### **Display of Boundary Conditions**

To view the boundary conditions, select the option *Boundary Condition* in the menu *View*. Three options will appear: *None*, *View Load*, and *View Displacement*. To view the load, select the option *View Load* as it is shown in *Fig. 11*. To view the displacement, select the option *View Displacement* as it is shown in *Fig. 12*.



Fig. 11. Menu for Displaying of Load Boundary Conditions



Fig. 12. Menu for Displaying of Displacement Boundary Conditions

#### <u>Notes</u>

- The load and the displacement <u>cannot</u> be displayed at the same time.
- The surface groups, where the boundary conditions are set, are displayed by lucent colors.
- The boundary conditions for nodes are displayed using vectors.
- Two vectors in opposite directions display each restrained degree-of-freedom of the restrained node.



Fig. 13. Displaying of Boundary Conditions for Surface Group



Fig. 14. Displaying of Boundary Conditions for Nodes

### **Removing of Boundary Conditions**

To remove the set boundary conditions, select the option *Clear Load* or *Clear Displacement* in the *BC* menu. To clear all set loads, select the option *Clear Load* as it is shown in *Fig. 15*. To clear all set displacements, select the option *Clear Displacement* as it is shown in *Fig. 16*.



Fig. 15. Removing of All Set Loads



Fig. 16. Removing of All Set Displacements

### **Output of Boundary Conditions to File**

To save the boundary conditions as an analytical conditions file (extension: .cnd), select the option **Save Condition** in the menu **File** (*Fig. 17*). The file extension \* .cnd will be added to the filename automatically (*Fig. 18*).



Fig. 17. Output of Boundary Conditions to File

| ★bcGUI - Save Condition File        | ×         |  |  |
|-------------------------------------|-----------|--|--|
| Filter                              |           |  |  |
| /amnt/home/home1/caedemo/adventu    | ire/*₊cnd |  |  |
| Directories Fi                      | les       |  |  |
| me1/caedemo/adventure/.             |           |  |  |
|                                     |           |  |  |
| Selection                           |           |  |  |
| /amnt/home/home1/caedemo/adventure/ |           |  |  |
| OK Filter Cancel                    | Help      |  |  |

Fig. 18. Specification of Boundary Conditions Output File

# **Reading of Boundary Conditions from File**

To input the boundary conditions from a file, select the option *Read Condition* in the menu *File*. In this case, all boundary conditions set previously will be annulled, and the boundary conditions specified in the file will be set.



Fig. 19. Reading of Boundary Conditions from File

| 🗙 bcGUI - Read Condition File 🛛 🔀                |  |  |  |
|--------------------------------------------------|--|--|--|
| Filter                                           |  |  |  |
| /amnt/home/home1/caedemo/adventure/*.cnd         |  |  |  |
| Directories Files                                |  |  |  |
| me1/caedemo/adventure/                           |  |  |  |
|                                                  |  |  |  |
| Selection<br>/amnt/home/home1/caedemo/adventure/ |  |  |  |
| OK Filter Cancel Help                            |  |  |  |

Fig. 20. Menu for Specification of File with Boundary Conditions

# **Display of Mesh Surface and Surface Layer**

To display a mesh surface, select the option *Patch* in the menu *View* (*Fig. 21*).



Fig. 21. Switch to Mesh Surface View

Even if the mesh surface is displayed, only primary nodes of face group boundaries can be selected.



Fig. 22. Mesh surface View



To display surfaces, select the option Surface in the menu View (Fig. 23).

Fig. 23. Switch to Surface Layer View



Fig. 24. Surface Layer View

<u>Note</u> The nodes cannot be selected in the surface layer view.

To display the surface group boundaries (default display), select the option *Wire* in the menu *View* (*Fig. 25*).



Fig. 25. Switch to Surface Group Boundaries View



Fig. 26. Surface Group Boundaries View

# **Changing of Projection Method**

To display the object in parallel projection, select the option *Orthographic* in the submenu *Projection* of the menu *View* (*Fig. 27*).



Fig. 27. Switch to Orthographical Projection View



Fig. 28. Orthographical Projection View

To display the object in the perspective projection (default setting), select the option *Perspective* in the submenu *Projection* of the menu *View* (*Fig. 29*).



Fig. 29. Switch to Perspective Projection View



Fig. 30. Perspective Projection View

# **Displaying of Selected Face Group**

To display the selected face group with the patch, choose the option *Patch* in the submenu *Selected Surface* of the menu *View* (*Fig. 31*).



Fig. 31. Switching to Patch View



Fig. 32. Patch View of Selected Surface Group

To display the selected surfaces, choose the option *Surface* in submenu *Selected Surface* of the menu *View*. The selected surface group will be displayed by lucent color. This is default display.



Fig. 33. Switching to Surface View



Fig. 34. Selected Surface Group View (Displayed by Lucent Color)

# **Returning of Observer Viewpoint to Default Settings**

To return the observer viewpoint to default settings, choose the option **Reset** in the menu **View**. The observer viewpoint will be returned to its original settings (default view).



Fig. 35. Resetting of Observer Viewpoint



Fig. 36. Default Observer Viewpoint of the Sample Model

# 5.3. Step 3. Creation of Entire-type FEA Model File

The boundary conditions and material properties attached to mesh can be saved in an entire-type FEA model file of ADVENTURE binary format. At this step, the following input and output files are used.

#### Input:

Mesh data file (extension is msh) Mesh surface data file (extension is fgr) File with analytical conditions (extension is cnd) Global index file (extension is trn) Material properties data file (extension is dat) Nodal temperature data file (extension is tmp)

#### Output:

Entire-type FEA model file (extension is adv) Entire-type FEA model file (in *ASCII* format) (extension is fem)

In order to perform this operation, the command makefem is used. The following arguments should be specified with makefem in the command line.

| mshFile | : | the name of mesh data file                                |
|---------|---|-----------------------------------------------------------|
| fgrFile | : | the name of mesh surface data file                        |
| cndFile | : | the name of analytical conditions data file               |
| matFile | : | the name of material properties data file                 |
| advFile | : | the name of entire-type FEA model file                    |
| trnFile | : | the name of global index file*                            |
| tmpFile | : | the name of nodal temperature data file**                 |
| femFile | : | the name of entire-type FEA model file in ASCII format*** |
|         |   |                                                           |

### <u>Notes</u>

Arguments in the parentheses [.....] can be omitted.

- \* Specify *trnFile* when you create *cndFile* by bcGUI.
- \*\* The file *tmpFile* is needed only for thermal stress FEA.
- \*\*\* The file *femFile* is used for debugging and usually not necessary being specified by the user.
- The files with material properties data and nodal temperature data can be created using any available text editor.
- If the model consists of several parts with different material properties, the correspondence between the material properties data and volumes (domains) should be checked using the procedures, which will be described below.

### **Displaying of Multi-Material Models**

(1). If the model consists of several volumes with different material properties, use shell script msh2pcm to convert the model.

% msh2pcm mshFile

where mshFile is the name of mesh data file.
If the model data file is Model.msh, two files will be created:
 Model\_V.pcm: the surface patch data file
 Model\_V.pcg: the surface patch group data file

(2). Start the bcGUI module to display the volumes.

% bcGUI *pcmFile pcgFile* 

where *pcmFile* is the surface patch data file and *pcg*File is the surface patch group data file.

If the first argument (*pcmFile*) is set, bcGUI will be started in the Volume View mode. In this mode, the nodes cannot be selected and the boundary conditions cannot be set. The volumes can be selected using keyboard keys. Use n to display the next volume and p to display the previous volume. The volume number will be shown in the left upper part of the screen.



Fig. 37. View Mode for Volumes





Fig. 38. Volume No. 0 Is Selected



Fig. 39. Volume No. 1 Is Selected

# 5.4. Flowchart of Data Processing

The data processing flow occurring from Step 1 to Step 3 discussed in *Chapters 5.1*, 5.2, and 5.3 is shown below.



# 6. File Formats

# 6.1. Mesh Data File (extension .msh)

Format of mesh data file (for linear tetrahedron)

```
23441
                                                  \leftarrow Number of elements
2770
                                                  \leftarrow Nodes, which compose 0 element<sup>*</sup>
          2610
                    2600
                              3480
                                                  \leftarrow Nodes, which compose 1<sup>st</sup> element
3480
          2770
                   2610
                             3490
23
         22
                   310
                            24
22
         21
                   310
                            24
         5
                  310
21
                            24
         ===== Omitted =====
4703
         4696
                  4702
                            4830
4707
          4703
                  4702
                            4830
          4703
                  4708
                            4830
4727
4708
          4703
                  4707
                            4830
                                                 ← Nodes that compose 23441-1<sup>th</sup> element
          4726
                  4727
4732
                            4830
                                                 \leftarrow Number of nodes
4831
                                                 \leftarrow X, Y, and Z coordinates of 0 node
-71.576560
                  -1.614198
                                   0.00000
                                                 \leftarrow X, Y, and Z coordinates of 1<sup>st</sup> node
-71.576560
                  -1.614198
                                  1.381617
-71.576560
                 -1.614198
                                  2.722493
-71.576560
                  -1.614198
                                  4.030211
-71.576560
                  -1.614198
                                  5.300060
         ===== Omitted =====
-55.506172
                   3.848006
                                  9.440700
-53.050143
                  0.879802
                                  4.377307
-54.576493
                   4.474329
                                  8.997737
-53.896503
                   7.741545
                                  9.582692
                                  7.342463 \leftarrow Coordinates of X, Y, and Z of 4381-1<sup>th</sup> node
-30.521942
                   6.716313
.-----
  2
            \leftarrow Number of volumes
            ← Number of elements in Volume No. 0
  11720
             \leftarrow 0 element of Volume No. 0
  0
             \leftarrow 1^{\text{st}} element of Volume No. 0
  1
           ===== Omitted =====
                                                                   Only for cases with
                                                                    multi-material data
            \leftarrow 11720-1<sup>th</sup> element of Volume No. 0
  11719
            \leftarrow number of elements in Volume No. 1.
  11721
            \leftarrow 0 element of Volume No. 1
  11720
           ===== Omitted =====
            \leftarrow 11720 - 1<sup>th</sup> element of Volume No. 1
  23440
      ----
```

\* Number of nodes, which compose elements:

- Linear tetrahedral element consists of 4 nodes.
- Quadratic tetrahedral element consists of 10 nodes.
- Linear hexahedral element consists of 8 nodes.
- Quadratic hexahedral element consists of 20 nodes.

The following figures show the connectivity of nodes in elements.



Tetrahedral Element



Hexahedral Element

# 6.2. Mesh Surface Data File (extension .fgr)

4  $\leftarrow$  Type of element<sup>\*</sup>  $\leftarrow$  Number of surface groups 8  $\leftarrow$  Number of surfaces, which compose 0 surface group 470 ← Information on 0 surface of 0 surface group\* 2 23 22 24  $\leftarrow$  Information on 1<sup>st</sup> surface of 0 surface group 3 22 21 24 ===== Omitted ===== 2313 268 267 263  $\leftarrow$  Information on 470-1<sup>th</sup> surface of 0 surface group 2314 269 268 264  $\leftarrow$  Number of surfaces, which compose 1<sup>st</sup> surface group 1115  $\leftarrow$  Information on 0 surface of 1<sup>st</sup> surface group 79 19 440 80  $\leftarrow$  Information on 1<sup>st</sup> surface of 1<sup>st</sup> surface group 838 435 80 440 ===== Omitted ==== 22998 4798 4792 4772 ← Information on 1115-1<sup>th</sup> surface of 1<sup>st</sup> surface group 22963 4792 4787 4772 ===== Omitted =====  $\leftarrow$  Number of surfaces, which compose 8-1<sup>th</sup> surface group 39  $\leftarrow \text{ Information on 0 surface of 8-1}^{\text{th}} \text{ surface group} \\\leftarrow \text{ Information on 1}^{\text{st}} \text{ surface of 8-1}^{\text{th}} \text{ surface group}$ 22942 4785 4790 4786 22962 4786 4790 4791 ===== Omitted ===== 23032 4806 4807 4800  $\leftarrow$  Information on 39-1<sup>th</sup> surface of 8-1<sup>th</sup> surface group 23027 4798 4805 4800

Format of mesh surface data file (for linear tetrahedral element)

\* Type of element:

| Linear tetrahedron    | : | 4  |
|-----------------------|---|----|
| Quadratic tetrahedron | : | 10 |
| Linear hexahedron     | : | 8  |
| Quadratic hexahedron  | : | 20 |

\*\* Information on surface

Here, "surface" means a triangular surface or a quadrangular surface composed by nodes. The first numeric value is corresponded to the element's number that belongs to the surface. The remained are the node numbers, which compose the surface. The number of nodes, which compose the surfaces, is:

| Linear tetrahedron    | : | 3 |
|-----------------------|---|---|
| Quadratic tetrahedron | : | 6 |
| Linear hexahedron     | : | 4 |
| Quadratic hexahedron  | : | 8 |

Numerical orders of the nodes composing the elements are presented in the following figures for each type of elements.



The last line of the above-mentioned file format  $(23027 \ 4798 \ 4805 \ 4800)$  is corresponded to the triangle of the  $23027^{\text{th}}$  element shown below.





Numbering of surfaces in the elements is shown in the following figures.

# 6.3. Extracted Surface Mesh Data File (extension .pch)

Format of patch data file (for linear tetrahedron)

| <b>2163</b><br>-71.5766 -1.6142 0<br>-71.5766 -1.6142 1.38162<br>-71.5766 -1.6142 2.72249<br>-71.5766 -1.6142 4.03021<br>-71.5766 -1.6142 5.30006<br>===== Omitted ===== | ← Number of nodes<br>← X, Y, and Z coordinates of 0 node<br>← X, Y, and Z coordinates of $1^{st}$ node                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | <ul> <li>← X, Y, and Z coordinates of 2163-1<sup>th</sup> node</li> <li>← Number of patches</li> <li>← Nodes, which compose 0 patch*</li> <li>← Nodes, which compose 1<sup>st</sup> patch</li> </ul> |
| ===== Omitted =====                                                                                                                                                      |                                                                                                                                                                                                      |
| 215321522159215021522151215821592152215021572152215721582152                                                                                                             | ← Nodes, which compose 4322-1 <sup>th</sup> patch                                                                                                                                                    |

\* The patch is composed from the mesh surface primary nodes.

| Linear tetrahedral element:    | 3 nodes |
|--------------------------------|---------|
| Quadratic tetrahedral element: | 3 nodes |
| Linear hexahedral element:     | 4 nodes |
| Quadratic hexahedral element:  | 4 nodes |

The node number is an index of the primary node of the mesh surface.

The connectivity of nodes is assumed in the clockwise direction if we look at the element from the outside.

# 6.4. Patch Group Data File (extension .pcg)

Format of patch group data file

```
#mainVertexInfo
                                                      ← Number of main nodes*
mainVertexN 299
                                                      \leftarrow 0 main node
0
                                                      \leftarrow 1^{st} main node
1
===== Omitted =====
10
27
===== Omitted ====
2161
                                                      \leftarrow 299-1<sup>th</sup> main node
2162
#edgeGroupInfo
edgeGroupN 305
                                                      \leftarrow Number of edge groups
edgeGroup 2
                                                      \leftarrow Number of nodes, which compose 0 edge group
                                                      \leftarrow 0 node of 0 edge group
0
                                                      \leftarrow 1^{st} node of 0 edge group
1
                                                      \leftarrow Number of nodes, which compose 1<sup>st</sup> edge group
edgeGroup 2
                                                      ← 0 node of 1^{st} edge group
← 1^{st} node of 1^{st} edge group
0
10
===== Omitted =====
                                                     ← Number of nodes, which compose 305-1^{\text{th}} edge group
← 0 node of 305-1^{\text{th}} edge group
← 1^{\text{st}} node of 305-1^{\text{th}} edge group
edgeGroup 2
9
30
#faceGroupInfo
faceGroupN 8
                                                      \leftarrow Number of face groups
faceGroup 470
                                                      \leftarrow Number of patches, which compose 0 face group
                                                      \leftarrow Number of 0 patch of 0 face group
0
                                                      \leftarrow Number of 1^{s\bar{t}} patch of 0 face group
1
===== Omitted =====
                                                      ← Number of 470-1<sup>th</sup> patch of 0 face group
469
===== Omitted =====
                                                      \leftarrow Number of patches, which compose 8-1<sup>th</sup> face group
faceGroup 39
                                                      \leftarrow \text{Number of 0 patch of 8-1}^{\text{th}} \text{ face group} \\\leftarrow \text{Number of 1}^{\text{st}} \text{ patch of 8-1}^{\text{th}} \text{ face group}
4283
4284
===== Omitted =====
                                                      ← Number of 39-1<sup>th</sup> patch of 8-1<sup>th</sup> face group
4321
```

\* The main node is a representative node, which characterizes a shape of model. In ADVENTURE\_BCtool, a primary node of the surface group boundary is assigned for main node.

# 6.5. Global Index File (extension .trn)

Format of global index file

```
0

1

2

3

4

5

6

7

8

9

==== Omitted =====

4809

4810
```

The global index file contains tabulated data where the node number of the surface patch data file (extension pch) is converted to the node number of the mesh data file (extension msh). The line number N in a global index system corresponds to the line number N-1 of a local index system.

# 6.6. Boundary Condition File (extension . cnd)

File format of boundary conditions file

| gravity 0 0 -9.8                   | <ul> <li>X, Y, and Z components of gravity</li> <li>Number of boundary conditions data</li> </ul> |
|------------------------------------|---------------------------------------------------------------------------------------------------|
| Doundary 12                        |                                                                                                   |
| loadOnVertex 271 0 10.             | 5 $\leftarrow$ Load on node 271 in X direction is 10.5                                            |
| loadOnVertex 271 1 10.             | 5   Load on node 271 in Y direction is 10.5                                                       |
| loadOnVertex 271 2 10.             | 5                                                                                                 |
| dispOnVertex <mark>8 0 0</mark>    | ← 8 <sup>th</sup> node displacement in X direction is 0                                           |
| dispOnVertex <mark>8 1 0</mark>    | ← 8 <sup>th</sup> node displacement in Y direction is 0                                           |
| dispOnVertex <mark>8 2 0</mark>    | $\leftarrow$ 8 <sup>th</sup> node displacement in Z direction is 0                                |
| loadOnFaceGroup 1 1 5.2            | 2 ← Surface group 1 has vertical load of 5.2                                                      |
| loadOnFaceGroup 2 0 2              | -1.1 $\leftarrow$ Load on surface group 2 in Z direction is -1.1                                  |
| dispOnFaceGroup <mark>3</mark> 0 0 | 0 ← Load on surface group 3 in has X direction is 0                                               |
| dispOnFaceGroup <mark>3 0 1</mark> | 0 ← Load on surface group 3 in Y direction is 0                                                   |
| dispOnFaceGroup <mark>3 0 2</mark> | 0 ← Load on surface group 3 in Z direction is 0                                                   |
| dispOnFaceGroup <b>4 1 1</b>       | ← Displacement in vertical direction of surface group 4 is 1                                      |

loadOnVertex is the load on node.

dispOnVertex is the displacement of node.

loadOnFaceGroup is the load on surface group.

dispOnFaceGroup is the displacement of surface group.

The meanings of three numbers following loadOnVertex and dispOnVertex are:

- 1 Node number
- 2 0 : X component, 1 : Y component, 2 : Z component
- 3 Value of load or displacement

The meanings of numbers following loadOnFaceGroup and dispOnFaceGroup are:

- 1 Surface group number
- 2 0 : X, Y, and Z directions are specified, 1: Direction, which is vertical to surface;
- 3 If the X, Y, and Z directions are selected, the components in X, Y, and Z directions are specified (0: X component, 1: Y component, 2: Z component).

If the direction vertical to surface is selected, the values of load or displacement are specified.

4 - Load or displacement are specified in X, Y, and Z directions

# 6.7. Material Properties Data File (extension .dat)

| Property                      | Name of Label               | Remarks             |
|-------------------------------|-----------------------------|---------------------|
| Young's Modulus               | YoungModulus                |                     |
| Poisson's Ratio               | PoissonRatio                |                     |
| Hardening Parameter           | HardeningParameter          | Elastic-plastic FEA |
| Yield Stress                  | YieldStress                 | Elastic-plastic FEA |
| Density                       | Density                     | Body force FEA      |
| Thermal Expansion Coefficient | ThermalExpansionCoefficient | Thermal stress FEA  |
| Reference Temperature         | ReferenceTemperature        | Thermal stress FEA  |

Format of data file with material properties (single-material model)

| YoungModulus       | 21000.0 | ← Young's Modulus     |
|--------------------|---------|-----------------------|
| PoissonRatio       | 0.4     | ← Poisson Ratio       |
| HardeningParameter | 1000.0  | ← Hardening Parameter |
| YieldStress        | 500.0   | ← Yield Stress        |
| Density            | 760.0   | ← Material Density    |
|                    |         |                       |

Format of data file with material properties (multi-material model)

| #materialInfo |          |                                  |                         |
|---------------|----------|----------------------------------|-------------------------|
| materialN 2   |          | $\leftarrow$ Number of materials |                         |
| propertyN 2   |          | ← Number of defined propert      | ies                     |
| YoungModulus  | 21000.0  | 2 properties are defined         |                         |
| PoissonRatio  | 0.4      |                                  | 2 materials are defined |
| YoungModulus  | 205940.0 |                                  |                         |
| PoissonRatio  | 0.3      |                                  | J                       |
| #volumeInfo   |          |                                  |                         |
| volumeN 3     |          | $\leftarrow$ Number of volumes   |                         |
| 1             |          | ← Material number of Volum       | ne No. 0                |
| 0             |          | ← Material number of Volum       | ne No. 1                |
| 1             |          | ← Material number of Volum       | ne No. 2                |
|               |          |                                  |                         |

- The user should create these data files in a text format.
- The program will determine automatically whether the file contains the data for a single material or for a multi-material model.
- It is allowed that the material properties data contain materials with IDs, which are not used in the current analysis.
- If the material properties data, which have a format for a single-material model is applied to multi-material model (multi-volume model), the model will be treated as a single-material model. All volumes will have the same material properties.
- If the material properties data, which have a format for a multi-material model is applied to a single-material model (single-volume model), the model will be treated as a single-material model and the material properties No. 0 will be applied.
- Prior to assigning of material properties data to volumes, check their correspondences as it is described in *Section 5.3*.

# 6.8. Nodal Temperature Data File (extension . tmp)

Format of file with nodal temperature data

```
3.00e+02

3.00e+02
```

• These data should be provided for a thermal stress analysis.

# 6.9. Entire-type FEA Model File (extension .adv)

As a final output, ADVENTURE\_BCtool creates an entire-type analysis model file in the ADVENTURE binary format. This file cannot be viewed without reprocessing by a viewer program supplied with ADVENTURE system. The entire-type analysis model file contains the data on element, node, displacement, load, gravity, Young's modulus, Poisson's ratio, hardening parameter, yield stress, density of material, thermal expansion coefficient, reference temperature, nodal temperature, and material number (for multi-material case). Examples of contents stored in the entire-type FEA model file will be given below.

### <u>Element</u>

| [Properties]                |                                                       |
|-----------------------------|-------------------------------------------------------|
| concent_cype=Eremenc        |                                                       |
| num_items=23441             | ← Number of elements                                  |
| format=i4i4i4i4             | " is repeated for the number of nodes in each element |
| num_nodes_per_element=4     | ← Number of nodes in each element                     |
| element type=3DLinearTetrah | nedron $\leftarrow$ Linear tetrahedral element or     |
| dimension=3                 | Quadratic tetrahedral element, or                     |
| index bvte=4                | Linear hexahedral element, or                         |
|                             | Ouadratic hexahedral element                          |
| [Data]                      | Quadrane nervanearar erement                          |
| 2770 2610 2600 3480         |                                                       |
| 3480 2770 2610 3490         |                                                       |
| 23 22 310 24                |                                                       |
| 22 21 310 24                |                                                       |
| 21 5 310 24                 |                                                       |
|                             | Information on the nodes, which compose the           |
| Omitted                     | element (the same as in the Mesh data file).          |
|                             |                                                       |
| 4727 4703 4708 4830         |                                                       |
| 4700 4702 4707 4020         |                                                       |
| 4700 4705 4707 4030         |                                                       |
| 4/52 4/20 4/2/ 4030 /       |                                                       |
|                             |                                                       |

#### <u>Node</u>

```
[Properties]
content_type=Node
                              \leftarrow Number of nodes
num items=4831
format=f8f8f8
dimension=3
[Data]
-7.157656e+01 -1.614198e+00 0.000000e+00
-7.157656e+01 -1.614198e+00 1.381617e+00
-7.157656e+01 -1.614198e+00 2.722493e+00
-7.157656e+01 -1.614198e+00 4.030211e+00
-7.157656e+01 -1.614198e+00 5.300060e+00
                                               It is the same as coordinates of
===== Omitted =====
                                               nodes in the mesh data file.
-5.550617e+01 3.848006e+00 9.440700e+00
-5.305014e+01 8.798020e-01 4.377307e+00
-5.457649e+01 4.474329e+00 8.997737e+00
-5.389650e+01 7.741545e+00 9.582692e+00
-3.052194e+01 6.716313e+00 7.342463e+00
```

#### **Displacement Boundary Conditions**



### Load Boundary Conditions

```
[Properties]
content_type=FEGenericAttribute
                                          ← Number of load datasets
num items=305
fega type=NodeVariable
label=Load
format=i4f8
index byte=4
[Data]
2725 0 -1.372480e+00
2726 0 -1.069377e+00
2727 0 -2.261483e+00
                                 1<sup>st</sup> value : Node number
                                 2^{nd} value : X, Y, Z are shown by 0, 1, 2.
3^{rd} value : Load
===== Omitted =====
3245 0 -2.684982e+01
3246 0 -2.329293e+01
3247 0 -1.423615e+01
```

### <u>Gravity</u>

### Young's Modulus

### Poisson's Ratio

### Hardening Parameter

### Yield Stress

### <u>Density</u>

### Thermal Expansion Coefficient

### **Reference Temperature**

### Nodal Temperature

| <pre>[Properties]<br/>content_type=FEGenericAttribute<br/>num_items=4831<br/>fega_type=AllNodeVariable<br/>label=Temperature<br/>format=f8<br/>index_byte=4</pre> | ← Number of nodes in Mesh data file                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| [Data]<br>3.000000e+02<br>3.000000e+02                                                                                                                            | <ul> <li>← Temperature of node No. 1</li> <li>← Temperature of node No. 2</li> </ul> |
| ===== Omitted =====                                                                                                                                               |                                                                                      |
| 3.000000e+02                                                                                                                                                      | ← Temperature of node No. 4830                                                       |

### Material ID

```
[Properties]
\verb"content_type=FEGenericAttribute"
num_items=23441
                                          ← Number of nodes in Mesh data file
fega_type=AllElementVariable
label=MaterialID
format=i4
index byte=4
[Data]
                                          ← Material ID of Element No. 0
1
                                          ← Material ID of Element No. 1
1
===== Omitted =====
                                          ← Material ID of Element No. 23439
0
0
                                          ← Material ID of Element No. 23440
```

# 7. Conversion of Surface Load to Nodal Load

ADVENTURE\_BCtool converts the load on surface groups (specified by a value of load per unit area) into the nodal load. The method of conversion is described in the following sections for different types of elements.

# 7.1. Linear Tetrahedral Element



If the load distributions  $f_1 {\sim} f_3$  are given for the surface group areas  $S_1 {\sim} S_3$  respectively,

the load  $L_1$  concentrated on the node  $P_1$  will be  $L_1 = S_1 \times f_1$ 

- the load  $L_2$  concentrated on the node  $P_2$  will be  $L_2 = S_2 \times f_2$
- the load  $L_3$  concentrated on the node  $P_3$  will be  $L_3 = S_3 \times f_3$

# 7.2. Quadratic Tetrahedral Element



If the load distributions  $f_1 \sim f_3$  are given for the area of the triangular surface group S, the load L<sub>1</sub> concentrated on the node P<sub>1</sub> will be L<sub>1</sub> = - f<sub>1</sub> x S x (1/9)

- the load L<sub>2</sub> concentrated on the node P<sub>2</sub> will be L<sub>2</sub> = -  $f_3 \times S \times (1/9)$
- the load  $L_3$  concentrated on the node  $P_3$  will be  $L_3 = -f_3 \times S \times (1/9)$
- the load L<sub>4</sub> concentrated on the node P<sub>4</sub> will be L<sub>4</sub> =  $(f_1 + f_2) \times (1/2) \times S \times (4/9)$
- the load L<sub>5</sub> concentrated on the node P<sub>5</sub> will be L<sub>5</sub> =  $(f_2 + f_3) \times (1/2) \times S \times (4/9)$
- the load L<sub>6</sub> concentrated on the node P<sub>6</sub> will be L<sub>6</sub> =  $(f_3 + f_1) \times (1/2) \times S \times (4/9)$

# 7.3. Linear Hexahedral Element



If the load distributions  $f_1 \sim f_4$  are given for the face groups areas  $S_1 \sim S_4$  respectively, the load  $L_1$  concentrated on the node  $P_1$  will be  $L_1 = S_1 \times f_1$ 

- the load  $L_2$  concentrated on the node  $P_2$  will be  $L_2 = S_2 \times f_2$
- the load  $L_3$  concentrated on the node  $P_3$  will be  $L_3 = S_3 \times f_3$
- the load L<sub>4</sub> concentrated on the node P<sub>4</sub> will be  $L_4 = S_4 \times f_4$

# 7.4. Quadratic Hexahedral Element



If the load distributions  $f_1 \sim f_4$  are given for the quadrangle face group area S, the load L<sub>1</sub> concentrated on the node P<sub>1</sub> will be L<sub>1</sub> = -  $f_1 \propto S \propto (1/12)$ 

- the load L<sub>2</sub> concentrated on the node P<sub>2</sub> will be L<sub>2</sub> = -  $f_2 \times S \times (1/12)$
- the load L<sub>3</sub> concentrated on the node P<sub>3</sub> will be L<sub>3</sub> = -  $f_2 \times S \times (1/12)$
- the load L<sub>4</sub> concentrated on the node P<sub>4</sub> will be L<sub>4</sub> = -  $f_2 \times S \times (1/12)$
- the load L<sub>5</sub> concentrated on the node P<sub>5</sub> will be L<sub>5</sub> =  $(f_1 + f_2) \times (1/2) \times S \times (1/3)$
- the load L<sub>6</sub> concentrated on the node P<sub>6</sub> will be L<sub>6</sub> =  $(f_2 + f_3) \times (1/2) \times S \times (1/3)$
- the load L<sub>7</sub> concentrated on the node P<sub>7</sub> will be L<sub>7</sub> =  $(f_3 + f_4) \times (1/2) \times S \times (1/3)$
- the load L<sub>8</sub> concentrated on the node P<sub>8</sub> will be L<sub>8</sub> =  $(f_4 + f_1) \times (1/2) \times S \times (1/3)$